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objects that move in the space over time ¥
e points that change location (e.g., animals, ——
sport players, vehicles, drones, ...) ;

e regions that change location and,
eventually, extent (hurricanes, etc.)

Most common sources:
sensors (GPS), as well as
radar, bluetooth, RFID,

etc.

(source: mobilitydb.com) (source: giphy.com)



Examples of Mobility Data

= Transportation (urban/maritime/aviation)

- Movement in indoor environments
- Location-Based Social Networking i o N
(LBSN), etc. etc. S o |
T-Drive Urban traffic data UK road accidents 2012-14
(source: research.microsoft.com) (source: kaggle.com)
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Marine transportation data
(source: marinetraffic.com)
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Aviation data
(source: flightradar24.com)

Foursquare check-ins
(source: foursquare.com)



“Mobility Data Science” Definition

An interdisciplinary field that uses N

) . Mobility Data
scientific methods, processes, Collection
algorithms and systems
to extract or

Sample Real World

extra polate Mobility Data Science Applications Infrastructures Mobilty Data

kn QWledge - Traffic - Indoor Environments Cleaning &

and insights - Urban Areas - Marine Transportation Preprocessing
KHeaIth Informatics| - Social Connections Mobility Data Privacy

from potentially
noisy, structured
and unstructured mobility data, and apply Mobility Data

- Analytics
knowledge from mobility data across a

broad range of application domains
The Mobility Data Science pipeline



. Mobility Data Collection, Cleaning & Preprocessing

Mobility Data
Collection

( MobiIitys;::gciza;x;mications MObIlIty Data Management
Infrastructures Mobility Data
- Traffic - Indoor Environments Cleaning &
- Urban Areas - Marine Transportation Preprocessing
- Health Informatics - Social Connections
Mobility Data Privacy

Mobility Data
Analytics



Open Mobility Data (1/2)

Trajectory datasets in the urban domain are limited to small size datasets, e.g.:
e RioBuses (Rio de Janeiro, Brazil): 12K trajectories (buses), 118M points,
1 month period, 1 min. sampling rate
e Grab-Posisi (Singapore): 84K trajectories (vehicles), 89M points,
1 month period, 1 sec. sampling rate
e Geolife (Beijing, China): 17K trajectories (mixed), 26M points,
3 years period, 1-5 sec. sampling rate
e RomaTaxi (Rome, Italy): 320 trajectories (taxis), 21M points,
1 month period, 7 sec. sampling rate Why do we call them “small”?

Other urban datasets only include origin/destination of each trajectory, e.g.,
e NYC Cabs (New York City, NY, USA): 1.4 billion trips, 9 years period



Open Mobility Data (2/2)

Other than road network- constrained
datasets:
e Maritime AIS data (+metadata), e.qg.:

o Brest, France: 19M points (6 months)
o Piraeus, Greece: 244M points (32 months)

e Sport (basketball, soccer, etc.)
data
o Woyscout soccer dataset: ~3M

time-stamped and geo-positioned
events during ~2K matches
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Soccer data (Pappalardo et al. 2019)



The Need for Mobility Data Preprocessing

p(t)

. . . . . . \ Cll

e GPS device inaccuracy; noise in data transmission; &
uncertainty of moving objects whereabouts between 1 7

two recorded locations; etc. -

\
»

*  What happened during (t;, tj+4)?
BY VA < amer: B Potential Area of Activity (PAA)

25 Where should we

place the red dot? s

where?
o

Noise in ADS-B Flight Aware positions during takeoff of
an aircraft (examine the sequence of the timestamps)



Typical Preprocessing Pipeline

1. Noise elimination
2. (if network-constrained data) Map matching

3. (if trajectory-oriented analysis) Gap filling, Trajectory segmentation

4. Data enrichment

raw points

"+ interpolation

e compact representation

From raw points to a compact format |
(source: mobilitydb.com) ‘




Challenges in Mobility Data Collection & Prep.

1. Mobility data privacy
o tradeoff between fine granularity
detailed mobility data and privacy
2. Mobility data bias
o equitable, fair actions and policies
based on mobility data science
results
3. Incentives for data sharing
o Incentives to drivers to share their
mobility traces, even for sporadic
trips

4.

Simulated mobility data
o work with social scientists to create
realistic individual-level human
mobility data

Inaccuracy in the movement

space infrastructure
o map inference algorithms that go
beyond inferring the map topology
to inferring map metadata
Filling in temporal mobility gaps
o scalable, fine-grained imputations
that mimic a continuous trajectory
data stream



Il. Mobility Data Analytics and Data Management Infrastructures

Mobility Data
Collection

Sample Real World o
( Mobility Data Science Applications Moblllty Data Management
Infrastructures o
Mobility Data
- Traffic - Indoor Environments Cleaning &

- Urban Areas

- Health Informatics

- Marine Transportation

- Social Connections

Preprocessing

Mobility Data Privacy

Mobility Data
Analytics



Goals of Mobility Data Analytics

A wide palette of analytics themes. To name but
a few:

Urban mobility (traffic data): green routing, traffic
anomaly detection, hot spot / path analysis, road
traffic prediction, travel time estimation, update of
road network

Public transportation (ticketing data):
understanding passenger demand and movement
patterns, strategic long-term planning of the network
Personal mobility of individuals (GPS and other
sensor data): activity recognition, personalized
routing, matching with ride-sharing services, crowd-
sourcing

0D flows

Analyzing aggregated trajectories and
OD flows with MovingPandas (source:
movingpandas.org)




Mobility Data Analytics Architectures

e from Python libraries for movement data
analysis (e.g., MovingPandas)

e ... to deep learning architectures (RNNs,
GANSs, Transformers, etc.)

(Per)FedNautilus Model

The FedNautilus architecture for (federated) maritime
The TermCAST architecture for urban flow traffic forecasting (Tritsarolis et al. 2024)

forecasting (Xue & Salim, 2021)



Advances in Mobility Data Mgmt Infra. (1/2)

From models and complex data types to capture, e.g. mobility semantics or
indoor movement ...

Long stop at7

Le Louvre museum
3
. ¥
Time %>

Stop at Place
de la Concorde

Restaurant
Babylone

X

' Stop at Palais Bourbo

Fingerprint management in indoor environments
(Laoudias et al. 2021)

Semantic Trajectories (Parent et al. 2013)



Advances in Mobility Data Mgmt Infra. (2/2)

.to indexing and query processing techniques, aiming to boost performance
to systems (all-in-one solutions)

Developer
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ST-Hadoop (Alarabi et al. 2018)
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MobilityDB (Zimanyi et al. 2020)



Challenges in Mobility Data Analytics & Data Mgmt Infra.

7. ML for mobility data
o build analysis primitives and common
building blocks shaping a framework
of ML-based mobility data analysis
8. Movement behavior understanding
o modelling and understanding mobility
behavior (using e.qg., XAl), robust to
changes due to societal events
9. Visual Analytics
o develop VA techniques facilitating
visual discovery of behavioral patterns

10.Building mobility-aware systems
o native support for mobility data (from
spatially- and temporally-aware DBMSs
to scalable big data and NoSQL
systems)
11.Location data as first-class citizens
o support multi-models in one seamlessly
integrated location+X system (“X” being
keywords, graphs, relational data, click
streams, document data, eftc.)
12.Hybrid (streaming, batch) workloads
o adopt the concepts behind HTAP (=

OLTP + OLAP) systems to support the
nature of mobility data



1.
lIl. Mobility Data Privacy

Mobility Data
Collection
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Efforts in Mobility Data Privacy

@ data collection stage (local setting):

e Applying Local Differential Privacy (LDP)
schemes to location data
e Perturbation methods (e.g., Geolnd)

@ data analysis stage (central setting):

e Differential Privacy techniques for training
ML models, e.g., Differential Private
Trajectories (DPT)

e ML models for the assessment of privacy
attacks (e.g., home-work attack) over raw
mobility data

Original trajectories Synthetic Trajectories

ol DPT f g
| System Overview i

B
N ¢ S aeaes '\'\n

-

Hierarchical 4
Reference
2 Systems Mapping ° |
N o o
i 'y Direction-weighted ;3:
T e Sampling P == }@3

Noise
Infusion

Prefix Tree Model Adaptive
Construction Selection Pruning

DPT overview (He et al. 2015)



Challenges in Mobility Data Privacy

13.Threat models and privacy definitions

. . . oy % < 'f> g .,__\ j/»»:'r"‘-f:. ir> N
o DP-relaxed versions may be needed given specific W/ T S,
threat models to enhance the privacy and utility P
tradeoff

o Better understanding on what sensitive information
may be revealed and reconstructed from mobility
data based models

14.Privacy and utility tradeoff and other factors

o Designing realistic synthetic data generation methods Geo-Indistinguishability
for optimal privacy utility tradeoff (also, ensuring the fairness)  (Andreés et al. 2013)

15.Explainability and societal education

o Principles, design guidelines, and tools for explaining DP’s protection and
limitation to the society / stakeholders




Conclusions

e Mobility Data Science is a distinct branch of
(generic) Data Science
o Space-time dimensions call for different methods

of data acquisition, management, analysis, and
privacy preservation

e We surveyed recent advances, described
motivating applications, and identified major
research questions = a list of 15 challenges on

o Mobility data collection & data preprocessing (6)

o Mobility data analytics & data mgmt infra. (6)
o Mobility data privacy (3)

aproObd-=
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13.

14.
15.

Mobility data privacy

Mobility data bias

Incentives for data sharing
Simulated mobility data
Inaccuracy in the movement space
infrastructure

Filling in temporal mobility gaps
ML for mobility data

Movement behavior understanding
Visual Analytics

. Building mobility-aware systems
1.
12.

Location data as first-class citizens
Hybrid (streaming, batch)
workloads

Threat models and privacy
definitions

Privacy and utility tradeoff
Explainability and societal
education
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