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The University of Piraeus Research Center
(UPRC) facilitates the research activities of
university members in different programmes and
initiatives. In this context, the Department of
Informatics (through UPRC) has been actively
involved in a significant number of (i) EU funded
R&D projects, (ii) National projects funded by the
Greek Ministry of Development and the General
Secretariat of Research and Technology, and (iii)
Projects developed in collaboration with
enterprises (both international and national).

Research statement

The Data Science Lab @ Univ. Piraeus (est. 2015), aims to
advance research on a wide range of Data Science topics,
including big data management, statistics and data
analytics, machine learning, semantic integration, with
particular interest in mobility data.



▪ Introduction – Getting to know maritime data

▪ Pre-processing methods for maritime data

▪ Artificial Intelligence 

▪ Real World Problems – Applications

▪ Vessel Location/Route Forecasting

▪ Fishing Vessels Activity Prediction

▪ Vessel Traffic Flow Forecasting

▪ Vessel Collision Risk Assessment
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Analytics & Forecasting Methods in the Martitime Domain 



Introduction – 

Getting to know maritime data
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Examples of maritime datasets

AIS (Automatic Identification System): is a collaborative, self-reporting, short-

range, coastal tracking system that allows vessels to broadcast their 

identification information, characteristics and destination, along with other 

information originating from on-board devices and sensors, such as location, 

speed and heading. 

image source: marinetraffic.com
• top: global snapshot on May 26th, 2022; vessel colors 

correspond to different vessel types (e.g., cargo is 

green, tanker is red) 
• left: vessels tracked by the Univ. Piraeus’ AIS station

▪ >250,000 vessels tracked daily (source: 

marinetraffic.com)

▪ AIS signal transmitted: every 2 to 10 sec 

depending on speed while underway; every 3 min 
while at anchor
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AIS signal example

source: http://rl.se/aivdm 

MMSI (Maritime Mobile Service Identity) is a 

unique 9 digit number for identifying a ship.
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Use AIS data to improve maritime transport systems

Non-trivial tasks

Nowadays, vessel’s movement information has become increasingly available due to the vast 

spread of AIS data. In order to use AIS data to improve maritime transport systems, we need to:

Extract knowledge from AIS data

Learn from AIS data

Model vessel movement behaviour based on AIS data

Examples:

Find vessels that move together (for long time)

Find the most typical among vessels’ routes as 

well as the outliers

Find the most crowded areas or routes

Forecast the anticipated route of a vessel or 

traffic in an area, etc.

Big Data problem!
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Big Data challenges

Veracity

Noisy and error-prone 

data due to receivers 

limited coverage, 

positioning devices 

switch-off 

VarietyVolume 

Velocity 

12K distinct ships/day, 200M AIS 

signals/month in EU waters
Historical & aggregated data, 

geographical & environmental data, 

contextual data, etc.

Image source: (Claramunt et al. 2017)



Pre-processing methods for maritime data

9



10

A trajectory is a model for a motion path of a moving object (vessel, human, animal, 

robot, …)

▪ (due to discretization) a sequence of sampled time-stamped locations (pi, ti) 

where: 

▪pi is a 2D or 3D point, (xi, yi) or (xi, yi, zi) resp., and 

▪ ti is the recording timestamp of pi 

From GPS/AIS data to trajectories

T = { <p1, t1>, <p2, t2>, …, <pn, tn> } 
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Popular trajectory examples
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A common representation of a trajectory is a 

3D/4D polyline whose vertices correspond 

to time-stamped locations (pi, ti) 

▪Usually, linear interpolation is assumed 

between (pi, ti) and (pi+1, ti+1)

Trajectory representation

Notes:

1. Reasonable assumption only when sampling is dense

2. Does not obey the physical rules (why?)

… but don’t care (why?)

(pi,ti)
(pi+1,ti+1)
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Acquiring Trajectories from Raw Data

The problem:

From raw data, i.e., successive time-stamped 
locations …

… to meaningful trajectories, i.e., continuous 
development of movement
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Data pre-processing

Definition: preparing data for analytics purposes

Data pre-processing includes:

▪Cleansing 

▪ noise removal

▪ smoothing, etc.

▪ Transformation 

▪ trajectory segmentation

▪ trajectory simplification, etc. 

▪Enrichment 

▪ semantic annotation

▪ data fusion, etc. 

▪ etc.

T = { <p1, t1>, <p2, t2>, …, <pn, tn> } 
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AIS Data Cleansing: Erroneous recordings - noise

Noise corresponds to values that are ‘impossible’ to 

appear

Can be detected and removed using 

appropriate filters

▪e.g., maximum speed 

▪ The AIS specification for SOG (Speed over ground) shows that 

102.3 knots is reported when the vessel speed is unavailable

Pi

Pi+1

Pi+2

S(Pi)

S(Pi): Limited 

Area of Pi+1
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AIS Data Cleansing: Erroneous recordings - random errors

▪ Random errors correspond to ‘possible’ values that 

appear to be small deviations from actual ones

▪ Can be smoothed using a 

plethora of statistical methods

▪e.g., least squares spline 

approximation (de Boor, 1978)



Goal: Segment sequences of points 

in homogeneous sub-sequences
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AIS Data Transformation: Trajectory segmentation
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AIS Data Transformation: Trajectory simplification

The need for simplification: efficiency in storage, 

processing time, etc.

▪Actually, simplification is a form of data compression

Goal: maintain the original ‘signature’ 

as much as possible by keeping 

a set of critical points only 

Approaches

▪Offline, i.e., multi-pass, vs. 

▪Online, i.e., 1-pass

image source: aminess.eu
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AIS Data Transformation: Trajectory simplification - Offline

Offline approaches:

▪ top-down vs. bottom-up vs. sliding window vs. opening window

e.g., Synchronous Euclidean Distance – SED (Meratnia & de By, 2004)

▪ Adapts the popular Douglas & Peucker polyline simplification (1973) to the mobility 

domain

image source: 
https://commons.wikimedia.org/wiki/Fi

le:Douglas-Peucker_animated.gif
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Online approaches, e.g., Trajectory Synopses 
(Patroumpas et al. 2015; 2017)

Maintains a velocity vector per moving object in order 
to detect instantaneous events 

▪ stop; change in velocity vector; etc.

Tradeoff: degree of compression vs. quality of 
approximation

AIS Data Transformation: Trajectory simplification - Online

image source: DATACRON EU project

Open source: https://github.com/DataStories-UniPi/Trajectory-Synopses-Generator

Patroumpas K., et al. (2020) Trajectory Detection and Summarization over Surveillance Data Streams. Big 

Data Analytics for Time-Critical Mobility Forecasting

https://github.com/DataStories-UniPi/Trajectory-Synopses-Generator


Artificial Intelligence (AI) 

21
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▪ The term "artificial intelligence" was first coined by John McCarthy (1956)

▪ Artificial Intelligence (AI) is the part of computer science concerned with designing intelligent 

computer systems, that is, systems that exhibit characteristics we associate with intelligence in 

human behavior – understanding language, learning, reasoning, solving problems, and so on.”  - 

(Barr & Feigenbaum, 1981)

▪ Intelligent behavior involves perception, reasoning, learning, communicating and action in 

complex environments (Nilsson 1998)

Artificial Intelligence (AI)

▪ Alan Turing proposed in 1950 the Turing test, to determine whether or not a 

computer demonstrates intelligent behaviour.
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Computational Intelligence

Computational Intelligence (CI) …

➢ … concept was first used in 1990 by the IEEE Neural Networks Council

➢ … is based on soft computing methods: work by aggregating data to 

partial truths (much closer to the way the human brain works)

➢ … is (according to Bezdek, 1994) a subset of AI.

➢ … is (according to IEEE CIS) the theory, design, application and 

development of biologically and linguistically motivated computational 

paradigms. Traditionally the three main pillars of CI have been Neural 

Networks, Fuzzy Systems and Evolutionary Computation. 

➢ … is considered to encompasses Machine Learning (ML), which is a 

subset of AI that focuses on the development of algorithms and statistical 

models that enable computers to learn from data, rather than relying on 

explicit instructions.

Nowadays, the most common way to approach AI is through the use of the so-called 

Computational Intelligence (CI) methods.
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▪ Neural networks (NNs) are a set of powerful mathematical tools that simulate 

the way that the human brain deals with information and the procedure of 

learning. 

▪ NNs have the ability to identify and learn highly complex and nonlinear 

relationships from input-output data only, without the use of first principle 

equations describing the system. 

Neural Networks

ARTIFICIAL NEURONBIOLOGICAL NEURON

Terminal 
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Synapses

Cell body
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Activation 
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Output
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1kw
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Neural Networks Architectures

▪ NN architecture is based on the structure and 

function of the biological neural network. 

▪ Similar to neurons in the brain, NN also 

consists of neurons which are arranged in 

various layers. 

Kohonen Networks (Self-Organizing Maps )

Recurrent Neural Networks

z-1

Inputs

z-1

z-1

z-1

Outputs

Multi-Layer Perceptrons (Feedforward networks)

Inputs
Outputs

Input layer 1st Hidden layer 2nd Hidden layer Output layer
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Multi-Layer Perceptrons

Multilayer Perceptron falls under the category 

of feedforward algorithms, because inputs 

are combined with the initial weights in a 

weighted sum and subjected to the activation 

function, just like in the Perceptron.

The data flows in the forward direction from 

input to output layer. Each layer is feeding the 

next one with the result of their computation, 

their internal representation of the data. This 

goes all the way through the hidden layers to 

the output layer.

Input layer

1st 

Hidden layer

2nd 

Hidden layer

Output layer

x1 xNx2 x3

Outputs

Inputs 3 types of layers:

tr
u
e
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o
m

p
u
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o
n

a
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n
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e
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▪ The goal of a neural network is to learn how to map 

input examples to output examples.

▪ Learning or training is a fundamental capability of 

NNs, which allows them to learn from their 

environment and improve their behaviour.

▪ The neural network learns by adjusting its weights 

and bias (threshold) iteratively to yield the desired 

output. 

Neural Networks Training
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Multi-Layer Perceptrons

Backpropagation is the learning mechanism that 

allows the Multilayer Perceptron to iteratively 

adjust the weights in the network, with the goal of 

minimizing the cost function. 

❑ Feedforward step: 

➢ an input pattern is applied to the input layer 

and its effect propagates, layer by layer, 

through the network until an output is 

produced. 

➢ the network's actual output value is then 

compared to the expected output, and an 

error signal is computed for each of the 

output nodes. 

❑ Backward step: 

➢ the output error signals are transmitted 

backwards from the output layer to each 

node in the hidden layer that immediately 

contributed to the output layer. 

Input layer

1st 

Hidden layer

2nd 

Hidden layer

Output layer

x1 xNx2 x3

Outputs

Inputs

Error signals Function 

signals
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Neural Networks: Static/Dynamic

Static networks: Feedforward neural

networks

They learn a static I/O mapping, Y=f
(X), X and Y static patterns (arrays)

Dynamic networks: Recurrent neural 
networks

They learn a dynamic I/O mapping,
Y(t)=f(t,X(t)), X(t) and Y(t) are
time−varying patterns
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Static Feedforward Networks vs Recurrent Networks

[examples, timesteps, features][examples, features]

Static patterns Time-varying patterns
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Neural Networks for timeseries
Static networks: Feedforward

neural networks
Dynamic networks: Recurrent 
neural networks

� ( � )  

� ( � )  

� ( � − 1)  

� ( � − 1)  

� ( � − 2)  

� ( � − 2)  

Hidden 
layer 

(Dense)
� ( � )  

� ( � )  Hidden 
layer 

(RNN)



Real World Problems - Applications
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Reading List

• Chondrodima E., et al. (2023) An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting. 

IEEE Transactions on Intelligent Transportation Systems

• Mandalis P., et al. (2023) Towards a Unified Vessel Traffic Flow Forecasting Framework. Proc. IEEE Int. Workshop 

BMDA.

• Chondrodima E., et al. (2022) Machine Learning Models for Vessel Route Forecasting: An Experimental Comparison. 

Proc. 23rd IEEE Int. Conf. MDM.

• Mandalis P., et al. (2022) Machine Learning Models for Vessel Traffic Flow Forecasting: An Experimental Comparison. 

Proc. 3rd IEEE Int. Workshop MBDW.

• Tritsarolis A., et al. (2022) Vessel Collision Risk Assessment using AIS Data: A Machine Learning Approach. Proc. 3rd 

IEEE Int. Workshop MBDW.

• Tampakis P., et al. (2022) i4sea: a big data platform for sea area monitoring and analysis of fishing vessels activity. 

Geo-Spatial Information Science.

• Tampakis P., et al. (2022) Sea area monitoring and analysis of fishing vessels activity: The i4sea big data platform . 

Proc. 21st IEEE Int. Conf. MDM.

• Troupiotis-Kapeliaris A., et al. (2022) Data Driven Digital Twins for the Maritime Domain. Proc. 21st IEEE Int. Conf. MDM.

• Patroumpas K., et al. (2020) Trajectory Detection and Summarization over Surveillance Data Streams. Big Data Analytics 

for Time-Critical Mobility Forecasting

• Petrou P., et al. (2019) ARGO: A Big Data Framework for Online Trajectory Prediction. Proc. 16th Int. Conf. SSTD.

Open-source: github.com/DataStories-UniPi

https://github.com/DataStories-UniPi


Real World Problems – Applications:

Vessel Route Forecasting

Fishing Vessels Activity Prediction
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Vessel Route Forecasting - Motivation

Accurate and timely Vessel Route Forecasting (VRF): 

▪ is critical for safety at sea

▪ can assist shipping industry in improving travel efficiency

▪ has a wide range of applications, such as accurate ETA 

calculation, collision / traffic jam assessment, etc.

▪ is challenging due to complex and dynamic maritime traffic 

conditions

Motivation for several analytics 
(incl. forecasting) tasks

image source: marinetraffic.com

Vast spread of AIS-enabled maritime fleet & 

Maritime Transport Systems (MTS)
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Our Contribution vs. Related Work

Our work:

✓ Examines the most popular ML methods to address 

the VRF problem & to provide a fair comparison 

study.

✓ Examines the effect of different sea areas, through 

an experimental setup that includes 3 real-world 
maritime datasets. 

✓ Enhances ML method’s prediction accuracy though 

the Trajectory Data Augmentation (TDA) method 

tailored to trajectory learning. 

✓ Addresses the sparsity and variable sampling rate 

of vessel data through the spatiotemporal-aware 

processing mechanism.

[1] Valsamis et.al. (2017) Employing traditional machine learning algorithms for big data streams analysis: The case of object trajectory prediction. J.  Syst. Softw.
[2] Tu et.al. (2018) Exploiting ais data for intelligent maritime navigation: A comprehensive survey from data to methodology. IEEE Trans . Intell. Transp. Syst.
[3] Wang et.al. (2020) Trajectory forecasting with neural networks: An empirical evaluation and a new hybrid model. IEEE Trans. Intell. Transp. Syst.
[4] Weerakody et.al. (2021) A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing.

Various methods have been proposed to 

address VRF, e.g. [1-3]. However:

• Due to limited comparison analysis, it is hard 

to evaluate their robustness for the purpose 

of MTS operational usage

• Using preprocessing (e.g., interpolation) to 

create points at a fixed sampling rate can 
lead to a) higher computational load, and b) 

poor model predictions [4]
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Problem Formulation - Vessel Route Forecasting 

Given: 

▪ a vessel’s trajectory [(𝐩0,𝐭0), …, (𝐩k, 𝐭k )] consisting of k 

transitions at (irregular) timepoints, 

▪ a time duration (prediction horizon) 𝜟t

▪ a number of transitions r

Predict: 

▪ the vessel’s future trajectory  [(𝐩k+1,𝐭k+1), …, (𝐩k+r, 𝐭k+r)] 

consisting of r transitions at (fixed) timepoints, i.e., with 

sampling rate equal to 𝜟t/r

* Note: r=1 // Vessel Location Forecasting (VLF)

The Vessel Route Forecasting (VRF) problem over a dataset composed of vessel trajectories
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Problem Formulation - Activity Prediction 

Given: 

▪ the vessel’s future trajectory (predicted using VRF method)

Predict: 

▪ the vessel’s future activity, either (a) at timestamp 𝐭i + 𝚫𝐭 or 

(b) until timestamp 𝐭i + 𝚫𝐭, where activity is one of {Mooring, 

Fishing, Steaming}

The Activity Prediction (AP) problem of fishing vessels:

• Tampakis P., et al. (2022) i4sea: a big data platform for sea area monitoring and analysis of fishing vessels activity . Geo-Spatial Information Science.

• Tampakis P., et al. (2022) Sea area monitoring and analysis of fishing vessels activity: The i4sea big data platform. Proc. 21st IEEE Int. Conf. MDM.
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Activity Prediction Definitions/Rules

Mooring: 

Vessels are within/close to ports.

Fishing: 

Vessels sailing away from 

ports with lower speed.

Steaming: 

Vessels sailing away from 

ports with higher speed.

Detailed AP rules

Distance from port < 3NM

PeriodSpeedDistance from port Ship typeShip activity

--< 3 n.m.Trawlers
Mooring

--< 3 n.m.Purse seiners

-< 4knots> 3 n.m.Trawlers

Fishing Month: Apr.-Oct., Hour (UTC): [17:00 - 24:00] & [00:00 - 01:00] 

Month: Nov.-Dec. & Jan.-Mar., Hour (UTC): [17:00 - 24:00] & [00:00 - 02:00] 
< 1knots> 3 n.m.Purse seiners

-> 4knots> 3 n.m.Trawlers

Steaming
-> 1knots

> 3 n.m.Purse seiners Month: Apr.-Oct., Hour (UTC): [01:00, 17:00] 

Month: Nov.-Dec. & Jan.-Mar., Hour (UTC): [02:00, 17:00]
< 1knots
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Vessel Location/Route Forecasting Framework

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Overview of the proposed framework

• Open Source: https://github.com/DataStories-UniPi/VLF_VRF 

• Chondrodima E., et al. (2023) An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting. IEEE Transactions on Intelligent 

Transportation Systems

• Chondrodima E., et al. (2022) Machine Learning Models for Vessel Route Forecasting: An Experimental Comparison. Proc. 23rd IEEE Int. Conf. MDM.

https://github.com/DataStories-UniPi/VLF_VRF
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Vessel Location/Route Forecasting Framework

Stage 1

Overview of the proposed framework, consisting of five stages 

… feeds the framework with vessels’ positioning data 
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Vessel Location/Route Forecasting Framework

Stage 2

Overview of the proposed framework, consisting of five stages 

… performs data cleansing:

▪ Record deduplication: remove data records at the same timestamp or at timestamps differing less than 1 sec.

▪ Noise elimination: remove records corresponding to invalid speed (above 50 knots)

▪ Stationery simplification: remove records corresponding to speed that indicates immobility, (below 0.1 knots)

▪ Insignificant trajectory elimination: eliminate trajectories with low number of points (less than 20 points)
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Vessel Location/Route Forecasting Framework

Stage 3

Overview of the proposed framework, consisting of five stages 

… includes the spatiotemporal-aware processing mechanism, whose purpose two-fold: 
a) segments sparse trajectories to non-sparse
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Trajectories are partitioned into sub-trajectories when : 

i. the time interval between two consecutive vessel points exceeds 30 minutes

Vessel Location/Route Forecasting Framework: Spatiotemporal-

aware processing mechanism – Trajectory Segmentation Process

75 150 225

75 150 225
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Trajectories are partitioned into sub-trajectories when : 

i. the time interval between two consecutive vessel points exceeds 30 minutes

ii. the length of the resulting trajectory exceeds 1000 points

Vessel Location/Route Forecasting Framework: Spatiotemporal-

aware processing mechanism – Trajectory Segmentation Process

75 150 225

75 150 225

75 150 225
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Vessel Location/Route Forecasting Framework

Stage 3

Overview of the proposed framework, consisting of five stages 

… includes the spatiotemporal-aware processing mechanism, whose purpose two-fold: 
a) segments sparse trajectories to non-sparse

b) transforms asynchronous time sampled spatiotemporal information to a representation suitable for RNN models by:

• using Trajectory Data Augmentation (TDA), which exploits on Douglas-Peucker simplification algorithm

• converting the time and the spatial information of each vessel to differences
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Vessel Location/Route Forecasting Framework

Stage 4

Overview of the proposed framework, consisting of five stages 

… trains the model by using the desired time horizon and provides predictions
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Vessel Location/Route Forecasting Framework

Stage 5

Overview of the proposed framework, consisting of five stages 

… transforms the model’s output and provides the predicted coordinates
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Vessel Location/Route Forecasting Framework

MLP 

GRU
LSTM

Linear

SVMr
CART
RFT 

AdaBoost 
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Vessel Location/Route Forecasting Framework: NN architecture

Δynext

Δxnext

Input 

Layer
Fully 

Connected 

Layer

Output 

Layer

(linear)

LSTM

Δy

Δt

Δtnext

Δx
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i4sea platform - Prediction Module: Tool Implementation

The NN model learns in an offline mode and predicts vessels locations in an online-streaming mode by applying 

the trained model 

Training

(offline)

KAFKA

Keras

+ 

TensorFlow

CPU

P
yt

h
o
n

Prediction

(online-streaming)

Keras

TensorFlow

GPU

P
yt

h
o
n



i4sea platform - Prediction Module: Online Performance

Runtime (sec) for 1 prediction
Min 0.1559
Max 0.4720
Median 0.2377
Mean 0.2387
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i4sea platform - Prediction Module: Online Process with pre-trained 

NN model
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consumer FLP/TP Prediction

topic Visualization VLF

topic

Trajectory information: 
- Timestamp

- AIS coordinates (lon, lat)

Validity 

Check

Pre-trained NN

Buffer for AP

purposes

topic Visualization

- Prediction Time interval (Δt)

- NN Parameters

- Data validity Parameters

Config parameters

producer

“position-reports”

topic Visualization

FLP

TP

AP

AP

VRF

Overview of i4sea platform - Prediction Module workflow



i4sea Platform - Monitor
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Experimental Setup

▪ For our experimentation, we used real-world AIS datasets

▪ Experimental protocol:

• training (50%), validation (25%), and testing (25%) randomly allocated

• model parameters optimized through intermediate experiments

U.S. West Coast
(Marine Cadastre)

Brest
(French Naval Academy )

Aegean Sea
(Marine Traffic)

Dataset U.S. West Coast Brest Aegean-Sea Aegean-Cyclades Piraeus

Provider MarineCadastre French Naval Academy MarineTraffic MarineTraffic Univ.Piraeus

Time frame
1 month 

(01–30/11/2018)
6 months 

(01/10/2015-31/03/2016)
1 month 

(01–30/11/2018)
1 month 

(01–30/11/2018)

1 day
(3/7/2018)

# of records 10,671,963 16,311,185 1,289,642 1,720,368 455,145
# of distinct vessels 1122 5041 2854 2645 361

Sampling rate (avg.) < 1 min < 1 min ~ 2.5 min ~ 2.5 min ~ 5 min

Aegean – Cyclades
(Marine Traffic)

Piraeus

(Univ. Piraeus )
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Experimental Results: Vessel Location Forecasting

[a] Valsamis et.al., "Employing  traditional  machine  learning  algorithms  for  bigdata streams analysis: The case of object trajectory prediction", Journal of Systems and Software, 2017.

[b] Tu et.al. "Exploiting  ais  data  for  intelligent  maritime  navigation:  A  comprehensivesurvey  from  data  to  methodology", IEEE Transactions on Intelligent Transportation Systems, 2018.

[c] Petrou et.al. "Online long-term trajectory prediction based on mined route patterns", International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, 2019.

[*] Wang et.al., "Trajectory  forecasting  with neural  networks:  An  empirical  evaluation  and  a  new  hybrid  model", IEEE Transactions on Intelligent Transportation Systems, 2020.

• Results for the implemented methods …

• were evaluated in the testing set, in terms of Euclidean distance between the original and the predicted points

• include the best result, followed by the average and standard deviation values from the 10 runs in parentheses.

PREDICTION RESULTS - IMPLEMENTED METHODS AND RELATED WORK (UNIT: METERS)
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Experimental Results: Vessel Route Forecasting (VRF)

Quality measures:

▪ Average displacement error (ADE) 

– the average distance error for all 

predicted time steps 

▪ Final displacement error (FDE) – 

the distance error at the final 

predicted time step
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Experimental Results: Vessel Route Forecasting (VRF) (cont.)

A closer look at FDE:

▪ distinct calculations 

regarding (a) eastings and 

(b) northings



Real World Problems – Applications:

Vessel Traffic Flow Forecasting (VTFF)

60
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Motivation

Vast spread of AIS-enabled maritime fleet & 

Maritime Transport Systems (MTS)

Accurate Vessel Traffic Flow Forecasting 

(VTFF): 

▪ is challenging due to the complex and dynamic 

maritime traffic conditions

▪ is vital for maritime harbor supervision, safety 

management and collision avoidance

Motivation for several analytics 
(incl. forecasting) tasks

image source: [1]

• Mandalis P., et al. (2023) Towards a Unified Vessel Traffic Flow Forecasting Framework. Proc. IEEE Int. Workshop BMDA.

• Mandalis P., et al. (2022) Machine Learning Models for Vessel Traffic Flow Forecasting: An Experimental Comparison. Proc. 3rd IEEE Int. Workshop MBDW.
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VTFF and Our Contribution

❑ In the literature, the most promising methods used in predicting vessel traffic flow, 

mostly use grid-based representation analysis, which approach the VTFF problem 

from two different perspectives: a) direct, or b)indirect.

❑ Our work provides comparison results based on real AIS data & examines different 

perspectives of the VTFF problem:

▪ Direct VTFF / Sequence-based VTFF

▪ Indirect VTFF / VRF-based VTFF

▪ Unified Approach for VTFF (UA-VTFF)

[2] He et al. (2017) Short-term vessel traffic flow forecasting by using an improved Kalman model. Cluster Computing.
[3] Wang et al. (2020) Use of AIS data for performance evaluation of ship traffic with speed control, Ocean Engineering.
[4] Zhou et al. (2020) Using deep learning to forecast maritime vessel flows. Sensors
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Problem Formulation 

Given: 
▪ a set of vessel trajectories D spanning in Ds (minimum bounding 

box of locations) space and DT in time,

▪ a time duration (prediction horizon) 𝛥𝑡,

▪ a number of temporal transitions r,

▪ a spatiotemporal (3D) grid that partitions Ds into grid cells of 
resolution G×G, and DT ∪ 𝛥𝑡 into r time frames,

▪ (only for UA-VTFF) a set of future vessel trajectories DP 
spanning in Ds and DT ∪ 𝛥𝑡

Predict:
▪ The expected number of vessels (presence) in each grid cell 

related to 𝛥𝑡.

Example: Example of 4 vessel 
trajectories in a spatiotemporal grid of 5 
time frames and 4 × 4 space resolution
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Overview of our Direct & Indirect VTFF Approaches

Perform VRF using a trained 

LSTM model

Allocate future locations into the 

spatio-temporal (3D) grid

Calculate presence within each 3D grid cell

VRF-based VTFF

Δynext

Δxnext

Input 

Layer
Fully 

Connected 

Layer

Output 

Layer

(linear)

LSTM

Δy

Δt

Δtnext

Δx

Mandalis P., et al. (2022) Machine Learning Models for Vessel Traffic Flow Forecasting: An Experimental Comparison. Proc. 3rd IEEE Int. Workshop MBDW.

Produce a sequence of vessels’ presence per 

spatial (2D) grid cell

Sequence-based VTFF

Train an ML model to predict the 

temporal evolution of each 
sequence
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Overview of our Unified Approach for VTFF (UA-VTFF) 

Mandalis P., et al. (2023) Towards a Unified Vessel Traffic Flow Forecasting Framework. Proc. IEEE Int. Workshop BMDA.
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Our Unified Approach for VTFF (UA-VTFF) 

Δynext

Δxnext

Input 

Layer
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(linear)
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Δtnext

Δx



67

Experimental Setup

❑ We used a real-world dataset, called Aegean-Cyclades

▪ 1 month (Nov. 2018) of vessel routes from/to Cyclades islands (GR) 

❑ Experimental protocol regarding ML models:

▪ Indirect VTFF / VRF-based VTFF: training (50%) | validation (25%) | 

testing (25%) randomly allocated

▪ Direct VTFF / Sequence-based VTFF: training (initial 75%) | validation 

(remaining 25%) | testing (last 3 observations of the traffic flow sequence)

▪ UA-VTFF: Using G=2km, 𝛥𝑡=30min, r=6: training (initial 75%) | validation 

(remaining 25%) | testing (last 6 observations of the traffic flow sequence)

❑ Quality measures:

▪ Symmetric Mean Absolute Percentage Error (SMAPE)

▪ Jaccard similarity coefficient

Overview of traffic flow (Nov. 2018), G = 10km. 
Darker color indicates higher traffic flow.
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Experimental Results: Direct VTFF vs Indirect VTFF 

❑ 1st experiment: comparing the Direct & Indirect VTFF approaches (Table I)

❑ 2nd experiment: a closer look at the VRF-based approach (Table II)



69

Experimental Results: Unified Approach for VTFF (UA-VTFF)

Prediction results (SMAPE) (𝐺 = 2km)Prediction results (SMAPE) for different 

alternatives of the UA-VTFF method in the 

testing set (𝐺 = 2km)

[1] Mandalis et.al. (2022) Machine Learning Models for Vessel Traffic Flow 
Forecasting: An Experimental Comparison. 23rd IEEE Int. Conf. MDM.

The proposed UA-VTFF approach (using LSTM 

or XgBoost) outperforms the indirect and direct 

VTFF strategies.

Results confirm that the LSTM based UA-

VTFF method can accurately capture the 

vessel traffic flow in short-term. 



Real World Problems – Applications:

Vessel Collision Risk Assessment (VCRA) 

70
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Motivation

Vessel Collision Risk Assessment (VCRA) is:

▪ critical for safety at sea

▪ challenging due to maritime traffic volatility

▪ typically addressed by calculating Collision Risk Index (CRI)

image source: www.ntnu.edu

Motivation for several analytics 
(incl. forecasting) tasks

Vast spread of AIS-enabled maritime fleet;

Emergence of Unmanned Surface Vessels (USVs)

Tritsarolis A., et al. (2022) Vessel Collision Risk Assessment using AIS Data: A Machine Learning Approach. Proc. 3rd IEEE Int. 

Workshop MBDW.
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Our Contribution vs. Related Work

• Our approach aims at decreasing processing 
time → investigate deeper ML architectures 
• How? by using less kinematic equations and, 

optionally, less features
• Decreasing processing time → able to experiment 

with deeper ML architectures → yield higher 
accuracy & maintain the overall responsiveness of 
the framework.

• Current state-of-the-art in VCRA → 

Formulaic & Deep Learning (DL) 

approaches

• The closest to our work combine 

CRI equations with…
• Gang et al. 2016 [19]: … SVM
• Li et al. 2018 [20]: … AFNN 
• Park et al. 2021 [21]: … RVM

Vessel collision geometry (adapted 
from [19])
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Problem Formulation

The problem: (train a ML model in order to) estimate 

CRI(vo,vt), i.e., the collision risk index of an own vessel vo 

w.r.t. a target vessel vt that are in an encountering process, 

at real-time

(right) The moving vector 
diagram of encounter 

ships – image source: Chen 
et al. 2015 [7]

(left) Trajectories of 
encountering vessels in 
the case of crossing 
situation – image source: 
Park & Jeong 2021 [21]

Two vessels are in an 

encountering process 

during a time period, when 

their distance decreases 

along this time period and 

increases right after.
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Proposed VCRA Method

Given the following features for each pair 

(vo,vt) of vessels in an encountering process:
▪ location (x, y), length, course φ, speed V

1. Create a dataset with 5+2 features: 

▪ distance D, speed VO and VT, course φO and φΤ

 (optionally) lengthO and lengthT

2. Train an MLP model with 

▪ two hidden layers (of 256 and 32 neurons, 

resp.)

▪ one output: CRI(vo,vt)
The proposed MLP-VCRA architecture
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Experimental Results

❑ We used a real-world dataset, called Piraeus AIS 

dataset

 1 day (July 3rd, 2018) of vessel routes in the 

port of Piraeus and the wider Saronic Gulf, GR

❑ In terms of quality, our MLP-VCRA approach

 Reaches 87.5% accuracy after training

 Outperforms its competitors by a large margin 

❑ In terms of latency* (i.e., response time)

 Outperforms competitors and the kinematic 

equations (ground truth)

❑ Regarding the features used

 Vessels’ length is optional & marginally 

improves quality and (surprisingly?) latency
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Summary

➢ Maritime Data Analysis & AI techniques can leverage from the “explosion” of AIS 

information in order to unlock valuable insights & pave the way for efficient Maritime 

Transport Systems (MTS) by tackling quite challenging tasks such as:

✓ route forecasting

✓ traffic forecasting

✓ collision risk assessment
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