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'Outline

1. Getting to know your data
m Nature of mobility data; sources; applications; similarity measures

2. Pre-processing your data
® Data curation (cleansing, simplification, enrichment, etc,)
m Data storage (and querying)

3. Analyzing your data
m Cluster analysis (group behaviour) and outlier detection
® Frequent pattern (path, location) discovery
m Classification and Prediction

4. Summary - the Future
m A real-world use case; What's next




\Sources of material used

Slides mainly based on:

N. Pelekis & Y. Theodoridis (2014) Mobility Data Management and Exploration. Springer.
URL: infolab.cs.unipi.gr/MDMEbook

Ofher sources used:
m Slides from EU H2020 DATACRON project
m Slides from EU H2020 DART project
m Slides from EU H2020 Track&Know project




Part I:
Getting to know your data

“Ta mavta pel, UNdEmMOTE KATA T AVTO UEVELY —
Everything changes, nothing remains still.”
Heraclitus




\Mobile devices and services

m | arge diffusion of mobile devices and related services and apps
= mobility-aware data

= Mobility-aware data are generated by

m ... mobile phones (e.g. cell positions in the GSM
network)

m .. GPS devices (e.g. humans’ smartphone)
m ... RFIDs, Wi-Fi access points, Bluetooth sensors, etc.

m [N this course, we focus on GPS data



| Geo-positioning

= GPS (Global Positioning System)
m 24-satellite constellation around globe
m Af least 5 satellites are in view from every point -
m GPS receiver gathers information from “
m in order to position itself (bv *~

2 I
—_— N .y
GPS/online phone GSM/cell network




| GPS data — an example

AAIITraiIs

s o) RN \_\
Moves>walking o
‘ %k kK Edit \
February 6, 2016 .
) \
)

<trkpt lat="38.164685" lon="23.72597"> - (™ .~ Mational park.
<ele>1132.17</ele> / O

<time>2015-10-
02708:08:29Z</time>
</trkpt>




| GPS data — an example (cont.)

® Raw data:
.gpx format

<irk>

<trkpt lat="38.16685" lon="23.72597">
<ele>1132.17</ele>
<time>2010-10-02708:08:29Z</time>

<trkpt lat="38.16682" lon="23.72601">
<ele>1131.98</ele>
<time>2010-10-02708:08:34Z</time>

<trkpt lat="38.164678" lon="23.7261">
<ele>1130.6</ele>
<time>2010-10-02708:08:58Z</time>

oo,
®e
.
oooooooooooooooooooo

. )
oooooooooooooooooooooooooo

</trkpt>

</trkpt>

</trkpt>



‘ From spherical (WGS84) 1o plane coordinates

= Universal Transverse Mercator (UTM): a type of cylindrical projection
m Infernationally standard coordinate system
m 60 zones (6 degrees of lon, each); 20 cells per zone (9 degrees of lat, each)

L e 7 x| s | | o | TTL E2N L
m A UTM geo-reference NSRRI Es. 3 i o ;@ ;EQ ; ;WWEA RRasac RENE=
. I LT R PR | T RIS =SSNRP ]
consists of a zone cell, a i SFiihC NGEb =2 e z Ap3eaRAEAz: dnRtns
. . . I ﬁ I 2 v J;CL\ Mg e N—} |
6-digits easting and a P R A
. . . l 37, 7 L K ;.
- S 1T BinsNl TN T y R
/-digits northing : SR EEEE DT T P [
m Eastings and Northings are | 7 SN L R
in meters ? Wil 4l
. J T H=
= ¢.g. Athens: (34S; b - s
739.545.42; 4,207,529.27)
M I 5 ol 1 o R R R N

image source: hitp://www.dmap.co.uk



| Location- and mobility-aware apps

= Navigation (vehicle or pedestrian) & Location-aware information
m Routing (walking, driving, eco-friendly, ...)
m Search around for nearby points-of-interest (POI)

= Resource management & Tracking
m Fleet (taxis, trucks, vessels, planes, efc.) management
m Tracing of a stolen car, locating persons in an emergency situation

= Fitness apps and Location-aware social networking
m Runtastic, Runkeeper, Human, Moves, etc.

m Google Maps Location Sharing, Facebook Nearby Friends, Tinder Places,
etc.

10



Commercial examples

= Track your activity (walking, running,

cycling, hiking, ...)

s toper a
Columbus P; =N
Activity

Stopwatch Mode
Y BA =
93/
ton Common @4 |

- ‘ 193 o " Running
2J Boston
- Children's
W Museum Cycling
D 90/
Walking
Running None
i} None b 5 min e

RunKeeper

sowse AN AllTrails &

Runyon Canyon
Trail

Trailhead Check In

O m % O @

View Photos  View Map  Favorite  Save Trail  Reviews

Runyon Canyon Trail is a 3.6 mile loop trail
located near Los Angeles, California that
offers scenic views and is rated as
moderate. The trail is primarily used for
hiking & trail running and is accessible year-
round. Dogs are also able to use this trail
but must be kept on leash.

A Z LR AR 2D
00:24:50

2.89 253 08:35

RECENT ACTIVITIES
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56:54 16.36
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L 3 Fourbarrel Coffee

m A special case: Moves i | Wak 81
(moves-app.com) -

m Activity inference !
B movement type,
® home/work places, etc.

Walk 3 min

< T I
A Yep A ge
: 3 O E@.
VN er o=rg ¥ Ano 50
CORIR NS .
B (X & O
= Oty (@)@ arathor
. 5 |
)
3 o > O
OUES P L
3
Kamatero
Marousi

How many hot spots do you see? = /
(green are Start points; black are End points) '

What do you infer about Yannis? 19



Commercial examples (cont.)

m Social networking apps - See in real fime where your friends are
m Google Maps Location Sharing,
m Facebook Nearby Friends,
m Tinder Places
m efc. T

10:02

Tuesday, April 8

f Facebook
Andrea Vaccari and 5 more
friends are nearby.

Tinder

10:52

Nearby Friends

NEAR SAN FRANCISCO, CA

See More

NEAR MENLO PARK, CA

Gabriel Grise

| l f‘\ MenIoPark CA 4

_ Islam Ismailov
s For

z

ced F

Andrea Vaccari
Muwon <
Yuntao Jia

m Noe \/’\Hey <
Grace Ko
SoMa <

Facebook

eeec0 Ufone = = 9:39 PM

@ < Share location

Fatima Wahab
fatima@addietivetips.com

Your places
&
Your contributions
2] i .
k3
o) Share location NEW
- R %\@6‘
&  Offline areas %qee‘ O
%
@ Satellite & traffic N e
0.
Settings . o

Add a missing place

Let friends know where you are
Help & Feedback
Share your real-time location with friends &
family. They can share with you, too.

GET STARTED

Terms of Service

2

»

Google Maps
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‘ From location data to trajectories

m GPS records samples (p;, 1;) of our movement —inferring
‘continuous’ movement is not trivial.

m A typical representation of a moving object’s trajectory is @
polyline (in 4D space; x-, y-, z-, t-) — vertices correspond to (p, 1))

= Usually, linear interpolation - = N

Is assumed between (Mm) 4 /

1771 /
(Pi, 1) and (P, i) _ - S+ -
m t0 be revisited |later (part ) ( II
—t —t
p(0) =\ X+ T—— (i =X,y + ——— (Visa=¥1)
i+1 i i+1 l
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‘ From location data to trajectories (cont.)

m Special case: Network-constrained movement
® Assumes a network / graph G = (V, N)

m Alternative models:
= Segment-oriented model: <§1>, <§2>, etc.
m Edge-oriented model: <§1>, <§2, S3>, eftc.
m Route-oriented model: <§1, S4, §7>, <§2, S3>, etc.

m The location of an object is represented by:
m the entity (segment / edge / route) it is located on, and
m an offset in [0, 1] denoting the relative location in the entity

15



‘ Trajectory Similarity

m Key question: How do we measure similarity between two
trajectories A, B2 not so trivial as it sounds

A

B

m Alternative approaches:

m Trajectory as a multi-dim. time-series :‘.-\
= Trajectory as a multi-dim. polyline Lo\g
m Trajectory as a movement function O



‘ Trajectory as a fime-series

m Time-series similarity has been studied extensively (e.g. Vlachos et
al. 2002; Chen et al. 2005). Examples:

m Fuclidean distance, Chebyshev distance, Dynamic Time Warping (DTW),
m Longest Common SubSequence (LCSS),

m Edit Distance on Real sequences (EDR),

m Edit distance with Real Penalty (ERP),

m Swale, etc.

17



‘ Trajectory as a polyline

® DISSIM (Nanni & Pedreschi, 2006; Frentzos et al. 2007
m Extension of Euclidean distance:

t, Euclidean M

DISSIM(R,S) = j tan(R(t),S(t))dt

n—1

1

DISSIM(R, S) ~ Ez ((LZ(R(tkLS(tk)) + Ly (R (tis1), S(tisn)) )

k=1
*(tk+r — tk))
1. d(z,y) >0
m DISSIM function is a metric 2. d(z,y)=0z=y
= Conditions: (1) non-negativity: (2) identity of indiscernibles; 8. d(z,y) =d(yz)
(3) symmetry; (4) triangle inequality 4. d(z,z) < d(z,y) +d(y, 2)



‘ Trajectory as a polyline (cont.)

® The TraClus approach (Lee et al. 2007)*

® Weighted sum of three components (distances between directed
segments):

m perpendicular d,
= parallel d
m gngulard,

2 2
d. - [u° + 112
[u+112

di = MIN(ln1,l2)
do = |Li||x sin(8)

*TraClus will be discussed in detail in Part lll. Clustering techniques

19



‘ Trajectory as a movement function

» Trajectory similarity using Fréchet distance, e.g. (Buchin et al. 2009)

m g measure of similarity between curves that takes into account the
location and ordering of the points along the curves

m continuous mappingu: A - B
= distance max d(a, p(@))

Walking your dog

How long must the leash be?

image source: slideshare.net

Discrete Frechet Distance of curves P and Q: 2.1124

| dFD Tength
—— (||
—— P ||
2 3 4 5 B 7 8

image source: mathworks.com



‘ Examples of datasets @ land (1)

m Geolife (source: Microsoft Research Asia):
182 users under various transportation
means; 17,621 trajectories; 68 Kmin 2,7 hrs
per trajectory, on the average; dense
sampling (1 sample every ~5 sec)

m T-Drive (source: Microsoft Research Asia):
2,357 taxis in Beijing for 1T week (15 million
points, in total); 869 Km per taxi, on the
average; sparse sampling (1 sample every
~3 min)

image source: research.microsoft.com
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Examples of datasets @ land (2)

New York City Taxi Pickups
2009-2015

m NYC taxis (source: NYC Taxi & Limousine
Commission): 1.4 billion trips, Jan. 09 — Dec.17.

m Ride-hailing apps data are also provided
m Aftention: pickup — drop-off locations are only

Brooklyn Monthly Taxi Pickups Manhattan Monthly Taxi Pickups
trailing 28 days, based on NYC TLC trip data Trailing 28 days
Uber 15m
1,000,000
750,000 1om

500,000 * Tasi
5m
Ride-hailing
/ Lyft apps

250,000
-
’/ / om

0 2010 2012 2014 2016 2018
Rid nclude Uber, Lyft, Juno*, Via, and Gett; taxis inclu

Jan'14 Jul"14 Jan'15 Jul'1s. Jan'16 Jul'16

image source: toddwschneider.com



‘ Examples of datasets @ sea

m AIS (Automatic Identification System): tracking system for
identifying & locating vessels at sea

m 400,000 vessels worldwide (source: vesseltracker.com)

23



‘ Examples of datasets @ air

= ADS-B (Automatic Detection System - Broadcast):
tracking system for identifying & locating planes on air

m 50,000 planes flying at the same time worldwide (source: flightradar24.com)

@flightradar24

24
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\Da’rase’r for hands-on

Celtic Sea

(Ray et al. 2018)
m Collected by Naval Academy, Brest (FR)
m DOI: 10.5281/zenodo.1167595

February 21,2018

Heterogeneous Integrated Dataset for Maritime
Intelligence, Surveillance, and Reconnaissance

RAY, Cyril; DREO, Richard; CAMOSSI, Elena; JOUSSELME, Anne-Laure

SSSSSSS

ppppp

BBBBBBBB
o
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‘ Learning from mobility data

m Analysis at individual level (i.e. per moving object):

m Calculate similarity between an object’s actual and expected
route

m Calculate minimum distance between an object’s frack and
aregion (e.g. forbidden zone)

m Calculate maximum number of other objects in an object’s vicinity
(e.g. 100 m buffer)




‘ Learning from mobility data (cont.)

m Analysis at collective level (i.e. per population of objects)
m Find objects that move together (for long fime)

® Find the most typical among objects’ routes as well as
the outliers

® Find the most crowded places

m Forecast the near future movement (or even the entire trajectory) of
objects

m efC.




‘ Analytics example -1

m Tanker vessels’ typical
movement in Aegean

sea, GR
m Blue lines: typical routes

m Green rectangles:
protected areas

m Further research upon
data analytics results

m e.g. risk analysis

image source: archipelago.gr
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‘ Analytics example -2

m Vessels’ movement in bay of Brest, FR

m Further research:
m e.g. classification of captains as normal vs. dangerous

frequent patterns

Actual vs. typical
locations per route

Cloud of locations
29

images source: datacron-project.eu



‘ Analytics example -3

JElafopisos
ENAQOVN00G

M,

Kato Nisi Beach g
Mapahia Katw Nnot i

m Elafonissos — Peloponnese
narrow pass (570 m.)

m Nafura 2000 protected area
m Searching for suspicious sailing

Flag: Moldova (]
Neapoli Vion Ship Type: Cargo
Status: Underway
Escosos. 1) SpeediCourse: 5 5kn /345
@ Length x Breadth: 106 m X 16 m
HASSAN D [MD] 5.8 knots | 345° Draught: 7 m
Destination: BENGHAZ
‘ <3 ETA: 2013-03-05 12:00 (UTC)
Received (32): Oh 24min ago Ship Photos: 4
& Shnw \Vieaanl'a Trark linlnad 2 nhatn
1L G
5
Steno Elafo
Elafonisou
Potamos
Nnot Elafonisos & )
Kompa A c,cm o
D - osmote
B Tholaria, Agia Moni;; Eacth Maps U v, cosmote. gr
Agios Georgios, Megali v, MapsGalaxy.com - S W 1 vér alvBean Cosmots
N36°28'55.33Dragonera, Antidragonera Get Maps, Directions & Traffic Conditions N36"3000.91 e
10kn E025°0148 dﬁasosm D};mwrkymiron with Free App! AdChoices [> o 5km E023°10'42.26" TToKTNOE Vi ouakzun dupzavl - AdChoices [
5 % Ayl Mow, Apg ewayios 500 313 I_l_l
\(W’Lg 5mi T (384820, 023-%?§J Map data 2013 Google - Terms of Use Report a map error ’T < 2mi (T B i) Mapjdatal@z013]coag)e - Teimsofiise Report a map error |T

image sources: wikipedia.org; marinetraffic.com 30



‘ Data visuadlization is a must ...

m .. inorderto “know your
data” better

m Example: major flight
routes from Paris to Istanbul

m DataViz is out of scope in
this course

m For those interested:

m e.g. Andrienko et al. (2007;
2008; 2017a; 2017b)

image source: (Andrienko et al. 2017a)
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‘ (Big) Mobility Data Analytics Challenges

Volume and Velocity

nnnnnn

P é%} v

12K distinct ships/day, 200M AIS
contacts/month in EU waters

Historical & aggregated data, geographical &
environmental data, contextual data, etc.

Noisy and error-
prone data due

' = l;f o
to receivers * ‘ ol '
limited coverage, e A\ . 0
positioning w5

devices switch-off : 4 Trajectory Trajectory
franslation rotation

Veracity Issues
Multi-scale assessment with pseudo-synthetic labelled data

32

Image source: (Claramunt et al. 2017)



| Summarizing part | ...

m | ocation- and mobility- aware data is tracked in everyday routine
activities

m Thesaurus of information - challenge for further investigation
(= data analytics)

m [ssues and challenges
® How to clean my datae¢
m How tfo store it?
= How to analyze ite

33



Part 11:
Pre-processing your data

“It is a very sad thing that nowadays there is so
little useless information."” Oscar Wilde




| Data pre-processing

m Definition: preparing data T={<p; t,> <pz H>, ... <pp, 1,>}
for analytics purposes T e

BRL,

m Data pre-processing tasks:
m Cleansing (noise removal, smoothing, map matching, etc.)
® Transformation (frajectory segmentation, simplification, re-sampling, etc.)
® Enrichment (semantic annotation, data fusion, etfc.)
m Sampling (the entire dataset)

m Data storage (and indexing)
m Moreover, generating ‘realistic’ synthetic datasets (why?)
35



| Data pre-processing tasks

wns!
gumnnn
o

any

opnnt

raw locations

e /

>

ot LT ':.“ "=
o L . .

- Sans .

.".'.- "o et Cegnuantenn®

cleansed locations

8:00, 8:45 17:30 18:00 19:00, 19:10,
(segmented) trajectories [ ]| /. ]

Road Train Sideway
! (by bus (by metro) m (on foot)
‘ —>
semantically- Home Office Market Home
annotated (relaxing) (working) (shopping) (relaxing)
trajectories [~, 8:00] [8:45, 17:30] [18:00, 19:00] [19:10,~] 36




| From GPS data to trajectories

m Recall that ... a typical representation of a moving object’s
trajectory is a polyline (in 4D space; x-, y-, z-, 1-)
m vertices correspond to fime-stamped locations

m Jsually, linear interpolation is assumed RN P
between (p;, ;) and (P, tisq) (M,m) 4
- ~F-
¢~ /
\ /
- t—t; t—t;
= Notes on linear interpolation: \ p(t) = (xi * s (ipr —xi), i+ 1t

1. Makes sense only when sombling is dense
2. Does not obey the physical rules (why?) ... but who cares (why?)

(yz+1—yi)>

37



| GPS Data Cleansing

® Erroneous recordings: noise vs. random errors

® Noise corresponds to values that are
‘impossible’ to appear

m Can be detected and removed using
appropriate filters

® e.g. maximum speed

P(t)

m Potential Area of
Activity (PAA)

S(P;): Limited
Area of P,




| GPS Data Cleansing (cont.)

® Erroneous recordings: noise vs. random errors

® Random errors correspond to ‘possible’ values that appear 1o be

small deviations from actual ones

® Can be smoothed using a
plethora of statistical methods

m e.g. least squares spline
approximation (de Boor, 1978)

_____ o-----.  Original trace
—®&——  Smoothed trace
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| GPS Data Cleansing (cont.)

m Special case: network-constrained movement
m Requires an additional step: map-matching

m Several techniques (Quddus et al. 2003; 2007):
m Geometric map-matching
m Topological map-matching
m Probabilistic map-matching
® Hybrid map-matching

m Examples...

40



| Geometric map-matching

m The basic idea: map a point into its closest position on the network

® Three types:
m Point-to-point (e.g. Euclidean distance)
m Point-to-curve (e.g. perpendicular distance)
m Curve-to-curve (e.g. Fréchet distance; see part lll)

41



| Topological map-matching

m Utilize both the geometry and the connectivity / adjacency of the
graph

® TWO steps:
m Choose the most suitable node(s) of the graph
®» Match the point

m Could be enhanced by a
“look-ahead” approach

42



‘ Trajectory identification (segmentation)

m Goal: Segment sequences of points in homogeneous sub-
sequences (= trajectories)

m Various approaches:
m |dentification via raw (spatial / temporal) gap
m |[dentification via prior knowledge (e.g. office hours, sleeping hours)
m Correlation-based identification (ideas from time-series segmentation)

m cfC. I
o
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| Stop discovery

®m How can Stop be detected in a raw trajectorye Solutions:

®m when the trajectory intersects the geometry of a POl and the duration of
intersection is above a given temporal duration threshold: SMoT
technique (2007)

® when dense areas of the trajectory points are detected, using e.g. a
density-based clustering algorithm, and those areas are mapped to @
POIl. CB-SMoT technique (2008)

stops
44



| Stop discovery (cont)

m Alternative: velocity-based stop identification
35 -
30
25
20
15

Speed evolution

10
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| Trajectory re-sampling

® The need for fixed re-sampling: prerequisite by some algorithms ®

= Possible approach: interpolation =« , Lex esampng aig -6 (432 = ol ,

over sampled location data 1
M 40+ —
m |-pass tool (Georgiou, 2017) —
M M M 3B 7
linear interpolation
30+ -
w
s
@ 251 —
s
20+ .
January 6, 2017 E 3 15+ —
1-pass fixed-rate linear resampler in ol ]
Matlab/Octave
Harris Georgiou 5r- T
—&—true values (o)
DESCRIPTION: +  lininterp.()
This is a template stand-alone code (no externals required) for a simple 1-pass fixed rate linear resampler. Specifically, the 0 1 L 1 L 1 I
script can be used as-is or as base for a function, which take a series of pairs <t x> and a requested fixed resampling rate 0 10 20 30 40 50 60 70
and it produces a new series of <t'x'> using stepwise linear regressors. Time (Ts)
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| Trajectory simplification

® The need for simplification: efficiency in storage, processing time,
etc.

= Actually, a form of data . T

compression 7\\ My ANS

e

= Goal: maintain the original }«&Q &
signature as much as possible N v S Nt
by keeping a set of critical W, NG &S
points only oA o O SR SR N
® Approaches
= Offline, i.e. multi-pass, vs. R
® Online, i.e. 1-pass CRITICAL POINTS . IR

image source: aminess.eu
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| Trajectory simplification (cont.)

m Offline approaches:
m fop-down vs. bottom-up vs. sliding window vs. opening window

® e.g. Synchronous Euclidean Distance - SED (Meratnia & de By,
2004)

m Customizes polyline simplification (Douglas & Peucker, 1973) to the
mobility domain

P,'('.\',',_l‘,',f,') Q @]

P.(xpYets)

Ps(x5,5.t5)
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| Trajectory simplification (cont.)

® Online approaches, e.g. Trajectory Synopses g B
(Patroumpas et al. 2015; 2017) .
= Maintains a velocity vector - S
per moving object in order = .
to detect instantaneous = e A
eve nts : Z‘:;nge in Speed ..l
= sfop; change in velocity - e
vector; efc. ‘2‘“ A
= Tradeoff: degree of ———
compression vs. quality of [ e
approximation e
. Changg Y P \
¢ Slow motion = - \\ |

® Srop . : 49



| Trajectory dataset sampling

= Motivation: Can we get the gist of a real dataset by
working on a sample of ite

m |f yes, we can extrapolate our findings on the ‘small’
(sampled) to the ‘large’ (entire) dataset

® e.g. run a computationally intensive algorithm to discover
mobility patfterns

m Sampling has been extensively studied in Statistics

8K points 4K points 2K points

50



| Trajectory dataset sampling (cont.)

m T-sampling (Pelekis et al. 2010; Panagiotakis et al. 2012) samples
the top-k representative trajectories, following a voting process

® Trajectory segmentation is neighborhood- rather than geometry-aware

m Example: T-sampling runs (1100 > 200 > 100 > 40 trajectories)

51



| Trajectory enrichment

® From “raw” frajectories ...

.
oot
-

m sequences of time-stamped /... et

»

..
Yeasransd

-
------
+®

locations (p.1)

m .. fo semantically-annotated
trajectories

m meaningful mobility tuples
<where, when, what/how/why>

= Not only a matter of down-
scaling the dataset size

@(by bus% ..

[8:00, 8:45] . [17:30 18:00]

Road Train

) Home Office
= Mainly, towards enhanced (relaxing) (working)
analysis and understanding [~ 8:00] [8:45, 17:30]

[19:00, 19:10]

Sideway

Market
(shopping)
[18:00, 19:00]

(by metro) m (on foot)

Home
(relaxing)
[19:10,~]

of movement



| Trajectory enrichment (cont.)

m Semantic trajectory (Yan et al. 2011; Parent et al. 2015): an
alternative (semantically-annotated) representation of the motion
path of a moving object

® homogenous fractions of movement

m A tragjectory is reconstructed as

a sequence of episodes [8:00, 8:45] _ [17:3018:00]  [19:00, 19:10]
. Road Train Sideway
(stops/moves) along with (bybus% (by metig) f _(on foof
appropriate tags ——o
= when¢ where? howe Home Office Market Home
what?e Why2 (relaxing) (working) (shopping) (relaxing)
[~, 8:00] [8:45, 17:30] [18:00, 19:00] [19:10,~]
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| Trajectory enrichment (cont.)

m SeMiTri (Yan et al. 2011; 2012)

m Preliminary: segmentation

movement pattern, etfc.
Road Network

= Core: semantic annotation e
= Semantic regions: annotate

Landuse data

episodes with geographic (semantic region)

ROIs (using e.g. OSM)

= Semantic lines: annotate
episodes with underlying
infrastructure, e.g. road network

Points of Interest }m

. . i 1 . EQ‘—> HOME &
m Detecting stops, changesin  (semantic poiny @@W y?

§'v S Semantic Annotation Platform
uuuuuu 7 CUSTOMER FACATM_H ,-ﬁi:)
O ; SCHOOL HOME

il N MARKET

(bus)

( ? /c\—o—\/‘
w -_> ” oad train
: ! ‘'metro)
[ ) e

-/‘“”‘J

<

[~ . .
Market area Residential ’l
area

0 . E j d
= Semantic points: annotate Stop (§§§s,e§oves) .rq/)\—o\-o Q/CL_O-J’

episodes with POI types (using
e.g. HMM techniques)

e 3 3 .o
Raw Data " ------ oot Reneeenee R
....... 1
7
|< ~2< trajectory - -7 €~ — another trajectory
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| DBMS storage options

m [ssue: could spatial DBMS efficiently organize mobility information?
m Objective: both space and fime should be considered as first-class

citizens.

m Current options:

m Spatial DBMS simulated to handle
trajectories as polylines, e.g. PostGIS

m PostGIS supports 2D/3D/4D geometry
data types

m A frgjectory can be simulated by @
3D/4D linestring (= sequence of points)

m vs. dedicated Moving Object
Databases (MOD)

| Geometry [—— SpatialReferenceSystem |

Point [Surface |
A

| GeometryCollection |

—>T LineString | SOPolygon| | MultiSurface | [ MultiCurve | | MultiPoint |
A A o
LinearRing

[MultiPolygon| |MultiLineString|

{ Composed
A Type
— Relationship
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\ The PostGlIS solution

m Create a table of 3D polylines ...

CREATE TABLE trajectories (
id integer PRIMARY KEY, | Getznetry [—— SpatialReferenceSystem |
geom geometry(LINESTRINGZ)

). Point [Surface | | GeometryCollection |
’ A

—>1 LineString | S{Polygon| | MultiSurface | |Mu|ti(|:urve| IMuItiIPoint]
m .. then insert WKT converted to &9
geomeTW LinearRing

[ MultiPolygon | |MultiLineString|

INSERT INTO trajectories(id, geom)
VALUES (1, ST_GeomFromText
('LINESTRING(000,111,222))

)- { Composed
! A Type
— Relationship 56




| Prototype MOD Engines

m Prototype MOD engines for archival (trajectory) data
m SECONDO (de Almeida et al. 2006) @ Uni. Hagen
= HERMES (Pelekis et al. 2014) @ Uni. Piraeus

m Based on the ‘sliced’ representation of frajectories
m Within each slice, the movement

XX
is modeled by a ‘simple’ function / {. ( . /'A
(linear, arc, etc. interpolation) /‘/‘/
= Further discussion on MODs is out ‘/
of scope in this course >

= See e.g. (Pelekis & Theodoridis, 2014), y/ /S VY /Y

ch.5s t ot ty,  tg tg
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| Querying trajectory datasets

= Time-slice queries t %

» find the locations of frajectories at
a given fimestamp

= Spatiotemporal range / NN queries o .
m find objects located inside a given \
spatial region during a given time interval ‘
m find objects located nearest to a given 0. J

(fixed) position / (moving) object during
a given time interval

= Topological queries

» find the trajectories that entered (crossed, bypassed, etc.) a given region
during a given time interval

= Trajectory similarity queries
» find the trajectories that are similar to a given trajectory
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| Querying trajectory datasets (cont.)

= Queries on semantically- [8:00, 8:45] _ [17:3018:00]  [19:00, 19:10]
. . Road Train Sideway
enriched data. Examples: (bybus% (by metrg) | _(on foon
m Find people who follow the pattern > >
“home - office — home"” Mon-Fri
. . Home Office
= Find people who cross the city (relaxing) (working) (shopping)  (retemme)
center from office back to [~, 8:00] [8:45,17:30]  [18:00,19:00]  [19:10,~]

home (by making intermediate
stops of at least 2 hour duration there)

m e.g. (Sideridis et al. 2016)

» Spatio-temporal-textual pattern (ST2P) queries. Example:

m Find people who (i) started from home between 8am-9am, (ii) walked
for at least 1 hour, and (iii) returned back home between 7pm-8pm.

m e.g. (Sakr & Guting, 2011; Gryllakis et al. 2017)
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| Querying under uncertainty

m Qur ground truth consists of (i) sampled locations, which (i) are
possibly incorrect !l (due to GPS measurement error)

m Result: uncertainty in query results (false hits, missed hits, etc.)
m e.g. find the trajectories that definitely / possibly entered a given area

m Technically: where could an object have been located at any
time 1 in between two sampled locations at t; and t,,¢

® The union of all lenses: Potential Area of Activity (PAA) o(t)

O
Data point recorded W
location
Uncertainty circle }@ C %é

Query Window

O)@




‘ The requirement for synthetic data generators

m Necessary for performance evaluation purposes

® Micro- (i.e., dealing with single moving objects) vs. Macro-scopic
(i.e., dealing with the traffic flow rather than single moving objects)

® Microscopic generator example:
® Free movement on the plane: GSTD (Theodoridis & Nascimento, 2000)

® Macroscopic generator examples:

= Movement under network-constraints: Brinkhoff (Brinkhoff, 2002),
BerlinMOD (DUntgen et al. 2008)

m Semantically-annotated movement following predefined patterns under
network-constraints: Hermoupolis (Pelekis et al. 2013; 2016)
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| Brinkhoff's generator

» Methodology:
m generate starfing points

m generate length of route
(depending on object class)

m generate destination for each
object

® compute the route

m compute the trajectory by
generating a random speed
every time unit

m based on capacity, weather,

edge Closs' eTC ° 1 - 80000 Time: 0 Delete Obj. l obj /begin (M-100 E:-10) 10 1
| objfime (M-40/E-3). 0 0
Zoom In I ] f I 00 t Time +

maximum time (5-400): 20 < | classes (M:1-20/E:1-10).

report probability (0-1000): | 1000 max.speed div. (10=fast 50=miadie 250=slow): so



| Hermoupolis generator

& ’ .‘/ ¢ _.

" \Kidsin

= Generate objects moving in an " wia. | Scheal
urban (network-constrained) area qged/fqmn}/ '

m ... according to different population o ?

male

profiles of given distribution, e.qg. ~— %
m Kids in school: 20% e
= Young students: 10% e
= efc. "

. Young/single
.~ working

® Dual output: synchronized raw (GPS-
like) + semantic frajectories Young

students

= Towards the “by-example” paradigm .
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| Summarizing part |l ...

® Building (and maintaining) meaningful trajectory datasets from
raw GPS data involves:

m Data cleansing (noise removal, random errors smoothening)
m Trajectory identification — segmentation — simplification — enrichment, etc.

m Efficient data storage and querying
(past vs. current locations)

m Trends in this area include:

m Spatio-temporal-textual query processing
(the era of Semantic trajectories)

m Predictive query processing

m Building synthetic data generators
“by-example”
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Part I11:
Analyzing your data

“The only source of knowledge is experience.”
Albert Einstein




| Types of mobility data analyftics

® Discovering groups and outliers

m Discovering frequent routes (hot paths) and
frequent locations (hot spots)

m Classification and prediction tasks

= efc.

Hiqh{mdpuq
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| Cluster analysis principles

150

m Objective: find groups of objects,

such that:
= the objects assigned fo the same group /\

140

are expected to be quite similar to b
each other, whereas
m the objects assigned to different groups opo T
are expected to be quite dissimilar to
eOCh OTher 50-20 (I) 2lo 4I0 slo slo ) 1&0 1;10 160
= Goal:

= intra- (inter-) cluster distance should be minimized (maximized, resp.)

m [ssue: appropriate “similarity” measures (recall Part |. Similarity)
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| Clustering techniques

» Hierarchical clustering: a set of

nested clusters, organized as a =
hierarchical tree p4,
m Hierarch is built upon objects’ similarity FW

pl p2 p3p4

m Partitional clustering: a partitioning
of objects into non-overlapping
subsets (clusters), according to
their similarity

m Spherical-oriented methods: K-means, eftc.
= Density-based methods: DBSCAN, OPTICS, efc.
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| Clustering techniques (cont.)

m DBSCAN (Ester et al. 1996): density-based clustering

m ‘density’ corresponds to the population within an
object’s neighborhood

m Method parameters: radius of the neighborhood (e);
minimum population within the neighborhood (m)

® The notion of density reachability
u D|rec’rly Densfry Reqchoble VS. Densﬂry Reochqble VS. Densfry Connec’red

| et




| Clustering techniques (cont.)

m DBSCAN (cont.) - A point is characterized as:
m core, if it has at least m points within its e- neighbornood

m border, if itself is not a core point, but it lies in the
neighborhood of a core point

m noise, otherwise

m Core vs. Border vs. Noise points
m Core points build clusters

m Border points are assigned to the clusters
built by their cores

m Noise points are marked as outliers
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| Clustering techniques (cont.)

m OPTICS (Ankerst et al, 1999)

m The concept of ‘core’ objects (again...)

m Objects are visited according to
their ‘reachability’ 9

m Parameter: reachability threshold e
m The reachability plot produces (1)

“valleys” and “hills”
m Valleys = clusters
m Hills - outliers (noise)

m Example:
mC,={1,9,28,4,3,7;C,={5 6}




| Trajectory clustering

m Challenging !l Objectives:
m Cluster trajectories w.r.t. similarity
m Eventually, detect outliers

m [ssues:
m Which similarity function@

m Upon the entire trajectories or
portions (sub-trajectories?

AN

Could you detect
clusters? outliers?

m State-of-the-art:
m Clustering on entire trajectories: T-OPTICS (Nanni & Pedreschi, 2006)

m Clustering on sub-trajectories: TraClus (Lee et al. 2007); S2T-Clustering
(Pelekis et al. 2017a; 2017b)

72



T-OPTICS (Trajectory OPTICS)

m Builds upon OPTICS method and DISSIM
distance function

DISSIM(R,S) = tan(R(t), S(t))dt

ty

m Recall that DISSIM is a metric = indexing is allowed

Time

Reachability plot

/3



| Sub-trajectory clustering

® Motivation: how many
clusters (and outliers)
are formed by
trajectories T, ... T,¢

m one (zero)? zero (four)?

= What if we work at sub-
trajectory level?

m Challenge: how do we
detect the appropriate
sub-trajectories?
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| TraClus (Trajectory Clustering)

TR, IR,
A common sub-trajectory

m Discovers portfions (sub-trajectories) T

of a trajectory wrt. homogeneity in IR,
movement

m TraClus works in two phases:

= Partition trajectories in sub-trajectories TR,
. . 1) Partiti A set of trajectori
= Group sub-trajectories together W ; o 70T TAIEEIONES
= Recall TraClus distance function TR,

(discussed in Part [.Similarity)

_ A representatlve trajectory
8.6 Iu? + 1107
L dL=

do- L lu+lp
sje sl L e di = MIN(Iin, o)
" = I, L2

e | @) Group

Si® 7 1 2 dy= ||L,|| x sin(8)

: , p— = r A cluster
ln iz A set of line segments
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| TraOD (Trajectory Outlier Detection)

® TraClLus methodology can be
exploited for outlier detection

= TraOD (Lee et al. 2008) works in two
phases:

m Partition: trajectories are segmented
into t-partitions (sub-trajectories); recall
TraClus

m Detect: a fragjectory is considered
outlier if it contains a sufficient number
of outlying t-partitions

N

(2) Detect

3
PrTRI TRg \‘\’_\_'
( 1 ) rtition ‘\

e ‘\ﬁt'o_ulgga\"_
Outlying t-’partitions
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‘ SQT—CIUSTering (Sampling-based Sub-Trajectory Clustering)

A three-step process:
" neighborhood-aware trajectory segmentation (via a voting process)
"  sub-trajectory sampling O

= sub-trajectory clustering

@5 <\\ OTz4 '/\ O3
and outlier detection S S

C,
Voting
—" \ Clustering Output
(Iﬁn%) l Sampling P & Outl'ier SU%:TLEE.IT;gTSo(gEs
Detection & OUTLIERS)
Segmentation /

image sources: (Pelekis et al. 2017a)



| S?T-Clustering (cont.)

new data old data
v v :
ReTraTree-Insert I
= ReTra index (Pelekis et al. 2017b) A NE
. .. . s | !
® Maintaining an index of clusters over T [clisters
sub-trajectories (and outliers) memory s T
8w
5 | !
ceresennnn, 3 Input o I
TJ“V Vv :
Pty 4 '
- disk :
e Vv :
_________________________________________________ |
pessssssssnsnnnns * SAT_Clustermg ....................... :
e \Y
representatives Otmg \4 :
I

disk

2 . J// : 2
- < 4™ level
T Cg, _/._/ raw t;ajectory
T4 o ata
3D-R-
Ts | G, . tree

v Sampli Greedy |
. S _»Clustering

image sources: (Pelekis et al. 2017b)
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| Discovering group patterns

= Several variants {{/@/{@)\ s |
m Spherical-like clustering: Flocks (Laube et al. 2005; (sgg‘, N ,/@Ci
Gudmundsson & van Kreveld, 2006) é@@j/ o dl B
m Density-based clustering: Convoys (Jeung et al. 2008); o 6 t:‘@/
Swarms (Li et al. 2010), efc. LN
¢ W O o 0. <
N t@ - ) > olle-l c
\ ) . //@Q Sao D @ @@
S g o oo DL
t1 t ts ta ts ts Q‘t7

® Note: they work on time-aligned location sequences
m cf. fixed re-sampling preprocessing task (part i)
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\ Flocks and variants

® Flock: a large enough subset of objects moving

along paths close to each other for a certain time

t \\\\\ m Circular cluster
N

[ 069

‘?\i\\é\g\

= Side-effect: S Na
the lossy-flock problem ©
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\ Flocks and variants (cont,)

® |[nteresting problems arise over the flock concept:
m |[dentify long flock patterns (fop-k longest flock pattern discovery)
m Discover meetings (fixed- vs. varying- versions)
m Discover convergences
m Discover leaders and followers O

convergence
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| Convoys vs. Swarms

m Convoy: a group of objects with
cardinality at least m, which are
density-connected with respect to a
distance threshold e, during at least

k fimepoints

m Timestamps are required to be

consecutive

m Swarm: a group of objects with
cardinality at least m, that are part
of the same cluster, during at least k

timepoints

m Timestamps are not required to be

consecutive

oD o\

G

e vd

O~

/ -
- ~ a AN
! O __g.o N
/A\ - //@Q \\\\\
oo, 0\\{&
_- P -
\ _- -~ O-
o--0-~ V0.
t1 t2 ts t4 ts ts Q‘t7
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\ Cluster evolution

m Clusters may evolve with fime (Spiliopoulou et al. 2006)*
m A cluster may expand or shrink

= A cluster may be splitin two or 77 e e i
. lus |
more O N s —— :
m A cluster may be absorbed by
another cluster | S -
. just b R R G TP
wo or more clusters may be T =
merged to a new cluster, Chstr . /
u eTC €/ﬂ€fg€é>,;f;:;,» — Cmster s\mnkﬁ

* Applicable to mobility data, though originally proposed for use in other domain
(document clustering)
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| Frequent pattern mining

m Technical objective: identify ‘frequent’ or ‘popular’ patterns

m Patterns could be routes (hot paths, etc.) or places (hot spots, etc.)
N .. T, <\\\ Ty //\

m Approaches: £

m techniques that identify <

regularities in the behavior of a single user,
e.g. Periodic patterns (Cao et al. 2007)

m techniques that reveal collective
sequential behavior of a set of users,
e.g. T-Patterns (Giannotti et al. 2007)




‘ T-Pattern (Trajectory pattern)

s AT-Patternis a pair (s, a):
m s =<(x,Y;)>is a sequence of locations
m g = <g> are the respective transition times
(annotations)

also written as:

Q- a9 o

(o, y0) — (v1,91) — -+ — (i, Yx)

= AT-pattern T, occurs in a frajectory Tif T contains a sub-sequence
S, such that:

m each point in Tyis close to a point in S (spatial closeness)
m fransition times in Toare similar to those in S (temporal closeness)
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T-Pattern discovery

Input:
Trajectory

: T-Paft
Dataset Output: T-Patterns

Regions of Inferest ..

e

o Fate



\ Classification

m Classification aims to predict the class label of a moving object
based on its features. State-of-the-art: TraClass (Lee et al. 2008b)

® TraClass (Trajectory Classification) works in three phases:
1. Partitions trajectories based on their shapes (using a TraClus variant)

2. Discovers regions that
contain sub-trajectories Container Port Refinery
mostly from the same class
(region-based clustering)

3. Discovers common movement
patterns for each class of sub-
trajectories (trajectory-based
clustering) Fishery

— — —» Container Ships = ---me- » Tankers ——— Fishing Boats




| Prediction

F2 G B
traffic jam __ ) te
ts
® Prediction aims to predict the future location(s) of T }
(or even the entire trajectory to be followed by) /:\.\a/ b
a moving object. t ot

= Two main approaches: Formula- vs. Pattern-based prediction
®m Moftion function models, e.g. RMF (Tao et al. 2004)
m vs. patterns built upon the history, e.g. Sequential patterns (Monreale et al.
2009), Personal profiles (Trasarti et al. 2017)

m Recent survey of 50+ methods: (Georgiou et al. 2018)
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| Prediction (cont.)

» WhereNext (Monreale et al. 2009) builds upon the T-pattern
concept: extracts a set of T-patterns and builds a T-pattern tree

m the best path is found for a given frajectory
m the predicted future location of the trajectory

is the region that corresponds to the Root
final node of the best path // \\

(1,C,35) ( 4,A,31) ( 11, B, 28) ( 13,F,37 )
[15,2(/ &0,12] [4,2//70N5] [8,70] [2,51]
(2, B,20)(3,D, 35)(5, A, 26)(6, C, 21) (9, B, 31)( 12, E, 38)( 14, D, 37)

[10,56]

m Example ...
[10,12]/ &5,20]

(7, D, 21)( 8, B, 10)( 10, E, 21)
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| Prediction (cont.)

= WhereNext (cont.)

® Having a new trajectory, the method follows 3 steps:
m Search for best match
m Candidates generation ot
» Make predictions

Id:1 Id:2 Id:3 Id:4
Region:C Re 'on:A Region:B Reglon:!:
Supporl 35 [4 20 Support:28 Support:37
o aq 1R 10) .
(10.12] P ¥ 4 8.70) 251
Reglon A gion:B o
Support: 26 Id 70 Support:31 1410 (11 Predictions
Regujn D ewion: C Region:E geglon:%_{'
Support:35 Support 21 on 25 [10,56] Support:28 upport:

image source: (Trasarti et al. 2009)

Issue: how to compute the Best Matche %0



| Prediction (cont.)

® MyWay (Trasarti et al. 2017) maintains a Personal Mobility Data
Store (PMDS) per participating

perso N User’s Personal Mobility Data Store

= How a person is moving? 8 . {3‘(’,‘,‘,’,‘,‘,’;“' } :,r:::::tt;arl A?/
. . Profile
m According to his/her past ,

movement patterns ey ,---.l
= What if the personal datastore 8 1 Galea 5

is not adequate?
m | ook into the collective

ﬁ J" v 1/ Predictor
=~ |

Collective ! '

knowledge base I ‘roe. | | L hybrid
» - Predictor
m 3 predictors: personal (red), = 2 ;1*
collective (blue), hybrid (green) mmmmmmmemmsmmmeesesoaoiiood

image source: kdd.isti.cnr.it 9]



What's new in big MDA®<

m Mobility data applications: historical vs. real-
time
m Offline management of archived past data

®m Online management of streaming current (and
recent past) data

m Queries and operations of interest:
spatiotemporal range, NN, etc.

m Offline vs. Online MDA. Examples (resp.):
m CloST (Tan et al. 2012)
= MOIST (Jiang et al. 2012)

Partitioning by Oi
and Time

=T
Data

iy

Hash(Oid)=0 | Hash(Oid)=0

Hash(Oid)=1

... | Hashoid)=

(10, t1) (t1, 2)

(2, 3)

.. (tn-1,tn)

Partitioning in

Space
| Loc0 | Locl [ Loc2 |
Block 001 Block 101 Block 201
Block 002 Block 102 Block 202
Block 003 Block 103 Block 203
Location Table Spatial Index Table Affiliation Table
ID | Location Spatial D ID | L/F | Follower Info
4 B Index 2 F-4
6 6 4| L | 264227427
4 5 | F6
6 L | 5(65).9(62>9)
7 | F4
\e N ? \l 9 | F-6
—® 0

92




‘ Offline data analyfics: CloST

m CloST: a scalable spatiotemporal data
storage system that supports data
analytics using Hadoop

m Two types of queries are ssupported
® single-object spatiotemporal range queries
m qgll-objects spatiotemporal range queries

® Three-level hierarchical partitioning:

1. partitions according to hash values of
the object ids and coarse ranges of time

2. partitions according to a spatial index on
the location attribute

3. actual data

Partitioning by Oi
and Time

=T
Raw

Y

Hash(Oid)=0

Hash(Oid)=0

Hash(Oid)=1

Hash(Oid)=n

(10, t1)

(tl, t2)

(12, t3)

(tn-1,tn)

Partitioning in
Space

Loc0

Locl

Loc2

v

\

Block 001

Block 101

Block 201

Block 002

Block 102

Block 202

Block 003

Block 103

Block 203
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‘ Online data analytics: MOIST

= MOIST (Moving Object Indexer with School Tracking)

» Methodology

m The space is divided into cells of
different resolutions and a space
filling curve is constructed

m Nearby and of similar moving
behavior objects are grouped
into one school

m The leader object is tracked,
distances between the followers
and the leader are recorded

Location Table

Spatial Index Table

Affiliation Table

ID

Location

%

‘\G+

—@

Spatial
Index

ID

L/F

Follower Info

F-4

L

2(4-2).7(427)

{

0

F-6

L

5(65).9(6>9)

F-4

O 9| ||l

F-6

m Aged data are flushed onto disk so that the history of objects be analyzed
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| Summarizing part i ...

m Typical lines of research in MDA include:
m (Sub-) trajectory clustering and outlier detection
m Detecting collective / group behavior
m Discovering frequent patterns (routes, places, etc.)
m Predicting the anficipated movement (or other features)

m Trends in this area include:

m Semantic- (i.e. context-) aware MDA
(clustering, frequent pattern mining, prediction, efc.)

® MDA under the Big Data prism
® [Incremental (online) MDA

25



Part1IV:
Summary — the Future

“As you set out for Ithaca, hope the voyage is a
long one, full of adventure, full of discovery...”
Constantine Cavafy




| An real-world MDA example

® The problem: data-driven aircraft trajectory prediction *
m .. instead of model-based prediction

m Data sources available include aircraft surveillance data (from multiple
sources), flight plans, air space zones, weather info, etc.

m datAcron system architecture (Claramunt et al. 2017; Vouros et al.
2018; Sanfipantakis et al. 2018)

1 -k

- H
i ) : é § ‘ Distributed RDF :’:J';:’N g E )
* For the followir\g slides, credits to all sl “m“y é; ‘3:‘ e <«
datAcron partners, especially BRTE and 11 0 ; e N <
e i - : g ARk £3 Do o
CRIDA (aviation use case) ol =i ,
Raw data streams E i ‘E. J::“E‘Ern 1 \LL//'
Data-in-motion i pri}cj;‘:ng i _Dt ManGEer 2 Ddtoana inad E : UEnd
e L. mponents | __ ¢ ! 0 e




| datAcron system architecture

s Batch Layer '
Non-positional data : Complex Event o] . ,
(Weather, Flight plans, ' Analyzer P : 4
Regulations, ...) : / % M y 'l '
E.g., ports, . i;_.‘ s » (, 5 : <y
aircrafts... ' g E 2 — :
. —— ) (8 > . [
E.g., :"’d"_"'m’ API : a S Distributed RDF Trajectory g :
web service .‘ g -g Store Analytics : t
External data sources ‘eccscsssssses la =| ] = teececcccccccccccccccce-- -’ L'
sPEeeSeeeeeeseee| o - @ || wmesssssssssssssssssesses - .
Data-at-rest | i Real-timelayer ||| % .
: = P S Complex Event -
¢ N IS 2 | E Recognition & '
' - © ® o w M t
' 2 S €% Forecastin S ¢ | <
' o % . B
Surveillance data - 8 o 2 E Tw ' 5
[ ] o t H H o N '
— - [« % e —
: : 5 Trajectory R :
: I Detection & ¢ | <WB
Raw data streams ' A Prediction .
. - ' In-situ '
Data-'n-mot’on E processing Data Manager Data analytics : UE;::S
. components components "
\ L R J




| Trajectory prediction (model-based)

=8 Digitsin Field 10a &b
A
-BT63/H-E 34 M2SRYWX/HE2U2V2G |
-22221200

-NO400F 100 DENUT UL610 LAM UL10 BPK UN601 LESTA UPS
MIMKU/MO82F 320 NATB YAY/N0464F 320 N188B YRI/N0O462F 340 DCT NOTAP
DCT TVC PMMS5

-KORD0700 KATL

-STS/ATFMX MARSA FLTCK A1C3L1 NAV/GBAS SBAS DAT/NO
SPECIFIC DESIGNATORS ADDITIONAL INFO DEP/MALAHIDE
5327N00B0IW 080622 TYP/2F153F5 NTM0130

EDW. URISATION PROB

PER/A
UNABLE ABOVE F120)

New or Modied contert

Model-based
Trajectory
prediction

Surveillance
Data

060 057 060

5 OAV- (PO apoevl e o concuct s
i

060 060

an e e

R VDl e e st e o, o et

7518 AT LOC Y 33 sgesoch et b snavlai,spoc v
5 FAF VOR FAY 3.

e meoun AGA)
Mo A

- o

Y 0

il | e
063 =g 069
e —
ey
e e e w e,
e -
BT ey
DTCES b SaASES ne ATICA WSS,
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| Trajectory pre

iction (data-driven

Digits in Field 10a &b

Up to 20 chars in Field 10b |

-2zz1200
-NO400F100 DENUT UL610 LAM UL10 BPK UN601 LESTA UP6.
MIMKU/MOB2F 320 NATB YAY/NO464F320 N188B YRUNO462F340 DCT NOTAP.
DCT TVC PMMS5
-KORDO700 KATL
-STSIATFMX MARSA FLTCK A1C3L1 NAV/GBAS SBAS DAT/NO.
SPECIFIC DESIGNATORS ADDITIONAL INFO DEP/MALAHIDE
5327N0060IW. 080622 TYP/2F15 3F5 NTM0130.

PER/A EIDW. JRISATION PROB
UNABLE ABOVE F120)

(FPL-EIN105-IS el
-BT6YH-E3JAN2SRYWNIHE2U2/2G 1

New or Modified contert.

Model-based
Trajectory
prediction

Surveillance
Data

DatACRON
Trajectory
prediction

Historical data
+ context data
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| Trajectory prediction (data-driven)

f (lat-, lon-, alt-, t-) tupl
= Formally: __—~ sequenceo (lat-, lon-, alt-, t-) tuples

Given a Flight Plan, predict the actual trajectory of the
corresponding flight, w.r.t. information that really matters

m Current and forecasted weather info,
m Predicted air-space traffic, SRR
m Aircraft type, etc.

Historical data
+ context data

Model-based
Trajectory
prediction

=3

Surveillance
Data

101



‘ Experimental dataset

® Spain (Madrid-Barcelona flights), April 2016

we v "
X ¢ A Nare A
A 0

.....

Data Enhanced TBO Workshop @ ICRAT 2018 ] 02



Data sources

m DataSets:

m |nitial Flight
Plans

m Actudl
trajectories
from
Surveillance

m Weather live
data and
forecasts

m Other context
data

EBBR Outbound Fligh Plans for a 2 hour fimeslot

European Sector static information
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| Data sources — Flight

plan

m Specified information provided
to air traffic services units,
relative to an intended flight
or portion of a flight of an
aircraft.

m Standards and data format

= ICAO 4444 + amendments

Spanish

= NM 19.0.0 - NOP/B2B -
Reference

Flight
Plan

» Manuals — FlightServices

m FIXM

Data

Network
Manager
Flight
Information

9 Number Type of aircraft  Wake turbulence cat.

Ao v MEDUM =] [adfate v|/[mod +]

19 EndurancePersons Em. Radio

0o y[x] 0% ~ ]

Dinghies Nb.  Capacity Cover  Colour
[ s a

Aircraft colour and markinas Remarks

7 Aircraft 1D 8 Flight rules Type of flight
IBE3IHF R v SCHEDULED ~|
10 Equipment

13 Departure aerodrome Estimated Offblock

LEMD [11a206 3] 0950 [
15 Cruising speed Level Route
NT 403 F$ 360 T NANDO UMB871 PTC UN851 MHN UM603 £
16 Destination aerodrome  Total EET  Altn aerodrome 2nd altn aerodrome.
LGAV ~ 0303 T|v| 1GsA LGTS

18 Other information
PBN/B1D3D4 REG/ECKHM EET/LECB0023 LFFF0058 LIRRO118 LIBB0206 LGGG0225

SEL/BKAR RVR/125 OPR/IBE

0

Relevant flight messages for all
the flights in Spanish airspace
(Flight plan creation, delefion
and

major updates, sector entry,
sector

leave,...)

Flight history for inbound and
outbound flights in European
Airspace

ICAO 4444 +
Amendments (FPL
2012)

NM 19.0.0 - NOP/B2B
Reference

Manuals —
FlightServices

For all the Spanish
airspace, 1
Gb/day.
Historically stored
for 7 years.
Streaming can
be emulated
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Data sources — Survelllance

m Detection and measurement of aircraft
position, range and bearing.

m Standards and data

format , vy
m ASTERIX CATXX :
= ASD|

= Plain ADS-B (RTCA o T S S
DO‘2 60) Asterix Cat XX

Historically stored for 7

years

ADSB Global network of 70 DO-260 and Hundreds of flights 3D
ADS-B decoded CSV  position, velocity... etc
stations (53 in Europe)  text (all ADS-B message

fields) each 0.5
seconds



\ Data sources — Survelllance (cont.)

ADS-B positions provided by FlightAware (left), ADSBHun (middle),
ADSBExchange (right)
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Data sources — Weather

ECMWF Re-analyses Original data: é6-hourly Limited by ECMWF data Policy
from 1979 to Analyses from 1979 to date. The Statistical variable might be
date. 0.72 degree horizontal daily, monthly or number of

resolution, over Surface and occurrences per month or...

u | ﬂVO|VIﬂg predICTIO nS O ﬂ d Useful for 37 vertical pressure levels. depending upon the variable

. climatologic Climatological data: type.
ObserVOTlonS al purposes means, medians and On demand other statistical
standard deviations for all  indicators can be calculated.
scomponenfof Wi & relevant variables at surface

ECMWEF Simultaneous 15 days forecasts with 3 Derived quantities like Ensemble
u STO N d d rds an d d d TO T = forecast of  hourly time step of 51 means, STD, probabilities can be
! g N O e the same parallel forecasts (ensemble made available over the period

formOT —i= % 05 ‘ } f ! Bl modelrun  members). 0.25 degrees and area requested. Need to

with slightly  horizontal resolution, several decide which variable and which

' | different vertical pressure levels . Two level make available.
= GRIB / GRIB-2 ! initial drops a day (00,122)

= j‘f‘ . conditions Up to 10 days forecast time
u ﬂeTC DF - =L range and 3 hourly /hourly

e

h

—— T— High time step. 0.125 degrees
< —— € =2 Resolution  horizontal resolution, several
m TAF ==

vertical levels both pressure
and hybrid. Two drops a day
(00,122)
s 15 days forecasts with 3 Derived quantities like Ensemble

= METAR

hourly time step of 20
parallel forecasts (ensemble
members). 0.50 degrees
horizontal resolution, several
vertical pressure levels . Four
drops a day (00,06,12,18Z)
Up to 10 days forecast time
range and 3 hourly /hourly

% fime step. 0.25 degrees
esolufion  horizontal resolution, several

ClabkhAl varti~Aal lavale kAath Aracer ira

means, STD, probabilities can be
made available over the period
and area requested. Need to
decide which variable and which
level make available.



| Trajectory Reconstruction

m Recall part Il tasks:
m Trajectory reconstruction (cleansing, summarization, etc.)
m Fusion from different sources and frajectory enrichment
... o be performed online

IFS Radar

factld;flightKey;callsign;adep;ades;flightRule;wake;aircraft;processDateReference;date_value;time_value;lat
itude;longitude;modo_c;vel_mod;hdg;vel_x;vel_y;vel_z

4209542619:6737113;IBE6856;SAEZ;LEMD;I;H;A343;2016-04-01;2016-04-01; 01:56:00.0000000;

-60;464.086;23.198;182.812;426.562;0

Challenges ...
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| Trajectory Reconstruction (cont.)

Challenge 1: Identifying critical points

vertical view lateral view
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| Trajectory Reconstruction (cont.)

Challenge 2: detect and eliminate noise

09:04:22 ,'l v ] my 2] FIightAware id: li
: , _ L BAW1438-1463734998-

adhoc-0, 20 May 20156,
Heathrow airport

: \\

R N T

h"’s : os'm:u
asna /() '
09:03:24

Noise in ADS-B Flight Aware positions during takeoff of an aircraft
(see timestamps)
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| Trajectory Reconstruction (cont.)

Challenge 3: fuse information from different sources

Samples of ADS-B
positions at Madrid
airport -
FightAware (left)
vs. ADSBHub (right)
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‘ Data-driven trajectory prediction

Method sketch:

Input: Flight plans, actual routes,
local weather, aircraft type, etc.

1. Past enriched trajectories are
Clustered; medoids of clusters
(‘representatives’) are also
produced

2. A Predictive Model (PM) is built
for each cluster

3. For each new flight plan FP, the
k-closest matches (PMs) are
found

4. Qutput: top-k PMs w.r.t. query FP

Data Enhanced TBO Workshop @ ICRAT 2018

Flight (7573900): from LEBL (id:2248) to LEMD (is:2200) on 30-Apr-2016 06:45:56

13 samples in 3.083000e+03 secs (rate: 1/100...630])

Lon (deg) -4 40 Lat (deg)

—--&—-flight plan
—#— actual route
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‘ Data-driven trajectory prediction (cont.)

Method sketch:

1. Past enriched trajectories are
Clustered; medoids of clusters
(‘representatives’) are also
produced

4.

Data Enhanced TBO Workshop @ ICRAT 2018
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‘ Data-driven trajectory prediction (cont.)

Method sketch:

Input: Flight plans, actual routes,
local weather, aircraft type, etc.

1. Past enriched trajectories are
Clustered; medoids of clusters
(‘representatives’) are also
produced

2. A Predictive Model (PM) is built
for each cluster

3. For each new flight plan FP, the
k-closest matches (PMs) are
found

4. Qutput: top-k PMs w.r.t. query FP

Data Enhanced TBO Workshop @ ICRAT 2018
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‘ Data-driven trajectory prediction (cont.)

Method sketch:

2.

3. For each new flight plan FP, the
k-closest matches (PMs) are
found

4.

Data Enhanced TBO Workshop @ ICRAT 2018 11 5




‘ Data-driven trajectory prediction (cont.)

Method sketch:

Input: Flight plans, actual routes,
local weather, aircraft type, etc.

1. Past enriched trajectories are
Clustered; medoids of clusters
(‘representatives’) are also
produced

2. A Predictive Model (PM) is built
for each cluster

3. For each new flight plan FP, the
k-closest matches (PMs) are
found

4. Qutput: top-k PMs w.r.t. query FP

Data Enhanced TBO Workshop @ ICRAT 2018 11 6




‘ Data-driven trajectory prediction (cont.)

» Hidden Markov Model (HMM)
Method sketch: « Linear Regressor (LR)
Input: Flight plans, actual routes,  Decision Tree (CART)
local weather, aircraft type, etc. * Neural Network (NN-MLP), etc.

1. Past enriched trajectories are

Example (below) of Non-linear Regressor: NN-MLP
5 A Predictive Model (PM) is built input (48): Flight Plan waypoints
o re 'ﬁ 'Vle T odel (PM)is built  output (1): deviation of prediction from a waypoint
or eacn cluster
3. For each new flight plan Ff Hidden Layer Output Layer
k-closest matches (PMs) o Imewt
found

4, Qutput: top-k PMs w.r.t. qu

Data Enhanced TBO Workshop @ ICRAT 2018
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| Summary

® The field of Mobility Data Management and Exploration* has many
success stories to narrate on:
» Data management - access methods, query

processing techniques, DBMS extensions (the
so-called, Moving Object Databases)

= Data exploration - dafa mining fechniques (clusters, 7~
flocks, convoys, T-patterns, hot spofs, efc.)

m .. mostly based on the sampled spatio-temporal
coordinates (x-, y-, z-, 1-) of moving objects

* Pelekis N, Theodoridis Y (2014) Mobility data management and exploration.
Springer.
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| Summary (cont.)

® The new era that emerges is around two
keywords:

= Semantically-annotated trajectories* — information
about when, where, what, how, why

® Big mobility data** — voluminous, streaming, disperse
information about movement of objects (at land, seaq,
qir)

Morning sleep

Evening sleep

*Parent C, et al. (2013): Semantic trajectories modeling
and analysis. ACM Computing Surveys, 45(4).

**Vouros GA, et al. (2018) Big data analytics for time critical mobility
forecasting: recent progress and research challenges. In Proceedings of EDBT.
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| A tentative research agenda

... for the next 5 years:

1. Reconstructing semantic trajectories online
Generating synthetic mobility data by-example
Spatio-Temporal-Textual data analytics

Predictive query processing (in big data environment)

Analyzing data-intensive mobility apps

o0 O~ LN

Data-at-rest vs. data-in-motion: Who winsg

120



| Acknowledgments

m Grateful o Data Science Lab people o0
m Nikos Pelekis, and other colleagues and students @Track & Know
= Ack EU support through a series of grants: MASTER

® Track & Know — Big Data for Mobility Tracking Knowledge
Extraction in Urban Areas. 2018-20 [trackandknowproject.eu]

m MASTER — Multiple Aspect Trajectory Management and

Analysis, 2018-22 [http://www.master-project-h2020.eu] datACron
m datAcron - Big Data Analyftics for Time Critical Mobility

Forecasting, 2016-18 [datacron-project.eu] @

m DART - Data-Driven Aircraft Trajectory Prediction Research.
2016-18 [dart-research.eu]

121



MATES 2018

Mobility Analytics for Spatio-temporal and Social Data
with VLDB 2018 - Aug 27 - 31,2018 - Rio de Janeiro, Brazil

44 INTERMATIONAL COMFERENCE ON VERY LARGE DATA BASES 2018

Home Call for Papers Paper Submission Program

Accepted Papers Keynote Speakers PC Members  Organizers

Why MATES?

An ever-increasing number of diverse, real-life applications, ranging from MATES 2018 is colocated with
social media (e.g., Twitter) to land, sea, and air surveillance systems, produce
massive amounts of streaming spatio-temporal data, whose acquisition, o

cleaning, representation, aggregation, processing and analysis pose new
challenges for the data management community. To transform the valuable V L DB 20] 8
information hidden in these sources into knowledge, it is essential to provide e

integration mechanisms that combine data from multiple diverse sources

(streaming, archival, web, and social sources) into a common representation  Important Dates (11:59PM PDT):
suitable for developing the subsequent analysis tasks under unified access to : >

the underlying data: Semantic descriptions of data offer opportunities but Paper due: May-11;2018May 21,

also create new challenges. 2018
Notification of acceptance: June 20,

2018
Workshop date: Friday, Aug 31,2018

Having enriched data representations is expected to facilitate data analysis
operations, including location or trajectory prediction and forecasting,
complex event detection and forecasting, and visual analytics. Additional
challenges raised in the context of the above applications include data
acquisition from disparate sources including social networks, handling the Accepted papers of the workshop will
streaming nature of the data, its volume, its spatio-temporal nature, the
requirement for efficient and effective link discovery at scale, scalable

be invited for publication in a special
issue of Geolnformatica, Springer,

Co-organized by

Data Science Lab

@ Univ. Piraeus
people

SYokies



BMDA 2018

Big Mobility Data Analytics
with EDBT 2018 - Mar 26 - 29,2018 - Vienna, Austria

Home Call for Papers Paper Submission Program

Accepted Papers Keynote Speakers PC Members Organizers

Why BMDA?

Nowadays, we have the means to collect, store and process mobility data
of an unprecedented quantity, quality and timeliness. This is mainly due
to the wide spread of GPS-equipped devices, including new generation
smartphones. As ubiquitous computing pervades our society, mobility
represents a very useful source of information. Movement traces left
behind, especially when combined with societal data, can aid
transportation engineers, urban planners,and eco-scientists towards
decision making in a wide spectrum of applications, such as traffic
engineering and risk management. The objective of the BMDA workshop
is to bring together researchers and practitioners interested in scalable
data-intensive applications that manage and analyze big mobility data.
The workshop will foster the exchange of new ideas on multidisciplinary
real-world problems, discussion on proposals about innovative solutions,
and identify emerging opportunities for further research in the area of
big mobility data analytics, covering all layers of the Big Data Value

BMDA 2018 is colocated with

¥
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|

Important Dates (11:59PM PDT):

Paper due: Dec 15,2017

Notification of acceptance: Jan 19,2018
Camera ready paper due:Jan 29,2018
Workshop date: Mar 26,2018

Co-organized by
Data Science Lab
@ Univ. Piraeus
people

RATA:



Thank you
for your attention !!



For more information:

www.datastories.org @ Univ. Piraeus
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