
1

Joint work with
Oshini Goonetilleke

and others

 Twitter as a platform for research
 Diverse topics and domains in analysis

▪ Content-based tasks: opinion mining

▪ Analytics on the stream: event detection

▪ Offline processing : spread of pandemics…

 Ad-hoc mechanisms to capture, store and
query and analyze twitter data

3

1. What are the requirements of a data
management framework for Twitter?

2. How can twitter data be modeled in a suitable
representation with twitter-specific properties?

3. What is the appropriate storage mechanism of
a large graph on-disk?

4. How can indexes speed up graph queries?

4

1

2

4

3

 What are the requirements of a data
management framework for Twitter?

▪ How do existing systems primarily collect,
represent and query twitter data?

▪ What are the essential components for an
integrated data management framework
for Twitter?

5

• Tools that systematically capture data using any one of the Twitter APIs

• Third Party libraries, data resellers, Focused crawlers

1) Data collection

• Module for crawling tweets + support for pre-processing, information
extraction and/or visualization capabilities

• Generic platforms, Application Specific platforms, Visualizations

2) Data Management Frameworks

• Provides a set of primitives beneficial in exploring the Twittersphere
along different dimensions.

• Generic Languages, Tweet Search, Languages for Social Networks

3) Query Languages and Systems

6

 Data Model
▪ Existing data models do not proactively capture twitter

interactions – user-user / tweet-tweet / user-tweet
▪ Objective: A graph-view of the Twittersphere capturing

Twitter interactions

 Query system
▪ Existing systems do not operate on Twitter Graphs –

modeled as either relational or RDF
▪ Objective: Declarative query system tailored for

querying tweets and its interactions.

 Challenges: management of very large graphs and
optimize queries for large networks.

7

8

 How can twitter data be modeled in a suitable
representation with twitter-specific properties?

▪ How can Twittersphere be modeled for graph
traversals?

▪ What are the types of queries that can be executed
using graph and non-graph constructs?

▪ How do queries perform on existing data management
systems that use graph structures to represent data?

Microblogging Queries on Graph Databases:
An Introspection

Oshini Goonetilleke1, Saket Sathe2, Timos Sellis1, Xiuzhen Zhang1

1RMIT University
2IBM Research Melbourne

GRADES 2015

May 31, 2015 – Melbourne, Australia

Background and Motivation

• Increasing applications consume twitter data
– Requirement of an integrated framework

• Need for efficient querying and management of
large collections of twitter data modeled as graphs

• In this study:
– Model basic elements of Twittersphere as graphs

– Data Ingestion capabilities working with a large dataset

– Determine the feasibility of running a set of proposed queries

• Twitter Data modeled as labeled directed multi-
graphs

GRADES 2015 2

Graph Data Management Systems

• Natural way to analyze graph data
• Popular open source graph DBMS: Neo4j and Sparksee
• Neo4j

– Fully transactional, ACID compliant
– Methods of interaction: Declarative query language, Core

API

• Sparksee
– Support for APIs in many languages
– Bit-map based representation of graphs on-disk
– Primary navigation operations: neighbors and explode

GRADES 2015 3

Query Translation Example

4

Neo4j Cypher Sparksee API

Recommendation Query:
Top-n followees of A’s followees who A
is not following yet

GRADES 2015

Database Schema for Twitter case study

Nodes Relationships

user 24,789,792 follows 284,000,284

tweet 24,000,023 posts 24,000,023

hashtag 616,109 mentions 11,100,547

tags 7,137,992

Total 49,405,924 Total 326,238,846GRADES 2015 5

3 Node Types, 4 Relationship types

Initial Dataset contain: users, tweets and follows relationships

Experiments

• Feasibility Analysis of
– Data Ingestion
– Query Processing

• Configuration
– Standard Intel Core 2 Duo 3.0 GHz
– 8GB of RAM
– Non-SSD HDD

• Version of the databases
– Sparksee 5.1, research license up to 1 billion objects
– Neo4j 2.2.M03, Community Edition
– Java APIs for both databases

GRADES 2015 6

Data Ingestion

• Simulate batch loading procedures of a graph
– Neo4j Import tool

• Effectively manages memory

• Cannot create indexes while loading

– Sparksee scripts
• Recovery and rollback disabled

• Cache size: 5GB

• Extent size: 64KB

• Neighbors not materialized

• Cannot perform incremental loading

GRADES 2015 7

GRADES 2015 8

Neo4j
Total Time : 45 min
Size on disk: 20.8 GB

Sparksee
Total Time : 72 min
Size on disk: 15.1 GB

Figure 1

Figure 2

Query Workloads

• Set of representative queries that are useful in
the microblogging context

• Basic
1. Select
2. Adjacency

• Advanced
3. Co-occurrence
4. Recommendation
5. Influence
6. Shortest path

GRADES 2015 9

Query Processing - Examples

• Select

– All Users with a follower count greater than a
user-defined threshold

• Adjacency

– 1-hop: All the followees of a given user A

– 2-hop: All the Tweets posted by followees of A

– 3-hop: All the hashtags used by followees of A

GRADES 2015 10

1-step

2-step

3-step

Co-occurrence queries
• Co-occurrence of hashtags and mentions

• Finding co-occurrences translates to a 2-step process:

• Examples:
– Q3.1: Top-n users most mentioned with user A

– Q3.2: Top-n most co-occurring hashtags with hashtag H

GRADES 2015 11

Recommendation Queries
• Recommendation from a user’s local community

• Only top-n most frequently followed users are considered relevant

• Examples:
– Q4.1: Top-n followees of A’s followees who A is not following yet

– Q4.2: Top-n followers of A’s followees who A is not following yet

GRADES 2015 12

Influence Queries
• Current and potential influence a user has on its

community

• An intuitive translation of this query as a function of user
mentions:
– Current influence of A is a union of the two sets: Most frequent users who

mention A and who are already followers of A

– Potential influence: Difference of the two sets

• Examples:
– Q5.1: Top-n users who have mentioned A who are followees of A

– Q5.2: Top-n users who have mentioned A but are not direct followees of A

13GRADES 2015

Other queries
• Shortest-path queries

– Shortest path between two users where they are
connected by follows edges

• Deriving new queries

• Suppose you want to answer this question:
– user A is interested in topic H who should A follow?

• Combine:
1. Get all the hashtags that co-occur with the given hashtag H

2. Get the most retweeted tweets mentioning those hashtag

3. Get the original users of those retweets

4. Order the users based on the shortest path length from A

GRADES 2015 14

Observations

• Alternate Solutions
– Cypher vs. Neo API
– Performance differences in Cypher queries
– Sparksee Traversals vs. Navigation operations

• Overhead of aggregates
– Retrieving the top-n results
– factors for increased performance: remove ordering

and de-duplication, limiting results
– Sparksee: no way to limit the result set

• Problems with cold-cache
– Warm-up time for Neo4j caches

GRADES 2015 15

Conclusions and Future Work

• Extension to other domains where a similar
schema is applicable (Facebook, LinkedIn etc.)

• Not tested for offline graph analytics

• Database tuning for optimal configuration to
suit query workloads

• Generation of the graph on-the-fly
– Testing for update workloads

• Semantic-aware strategies to speed up the
queries by graph partitioning and storage

GRADES 2015 16

 What is the appropriate storage mechanism
of a large graph on-disk?

▪ How can we partition the graph such that the I/O
can be minimized for known query workloads?

▪ What is a suitable representation of a graph on
disk?

10

Edge Labeling Schemes for Graph Data

SSDBM

June 27-29, 2017 – Chicago IL, USA

Oshini Goonetilleke1, Danai Koutra2, Timos Sellis3, Kewen Liao3

1 RMIT University, Australia
2 University of Michigan, USA

3 Swinburne University of Technology, Australia

Oshini Goonetilleke, SSDBM 2017

Background

• Graph data is everywhere!

• Management and analysis of networked-data

– Data storage, management, querying

• Tools

– GDBMS – Neo4j, Sparksee

– Network analysis packages – SNAP, NetworkX

• Graph representation

– Matrix, Adjacency node/edge lists

Oshini Goonetilleke, SSDBM 2017

Improving query performance

• Node re-ordering

– SlashBurn, Shingle

• Graph compression

• Graph partitioning, clustering

– METIS

Oshini Goonetilleke, SSDBM 2017

Motivation
Node id

 1,4,11,16 2,3,7

Index on incident edges

on nodes

1, <p1,v1>, <p2,v2>, <p3,v3>, ...

2, <p1,v1>, <p2,v2>, <p3,v3>, …

3, <p1,v1>, <p2,v2>, <p3,v3>, …

….

8, <p1,v1>, <p2,v2>, <p3,v3>, …

9, <p1,v1>, <p2,v2>, <p3,v3>, …

…

11, <p1,v1>, <p2,v2>, <p3,v3>, …

12, <p1,v1>, <p2,v2>, <p3,v3>, …

....

Data file on disk sorted by edge id

(edge ids followed by all its properties)

Edge ids

Page 1

Page 4

Page 5

Goal: Assign edge labels to achieve improved disk locality for efficiently
answering typical neighborhood queries, without modification to the storage
internals of the graph system.

Oshini Goonetilleke, SSDBM 2017

Objectives

• Given a directed graph, how should we label both its
outgoing and incoming edges to achieve better disk
locality and optimize neighborhood-related queries?

- Can we speed up popular edge-based neighborhood graph
queries using an edge labeling?

- Can we observe improved disk I/O as a result of better
locality when storing graph on disk?

- Do better edge labeling schemes show benefit in storage
compared to a random ordering and other baselines

- Can streaming graph partitioning benefit from an already
locality improved edge-list?

Oshini Goonetilleke, SSDBM 2017

Sparksee

• Bit-map based representation

Oshini Goonetilleke, SSDBM 2017

Outline

• Background and Motivation

• Edge consecutiveness

• Baselines and proposed method

• Experiment Results

• Application: Graph streaming

• Conclusions and Future work

Oshini Goonetilleke, SSDBM 2017

The effect of different ordering strategies

A C

ED

B

F

6 3

1

4
2

5

7

A C

ED

B

F

1 2

6

7
3

4

5

a) Random Ordering b) Source-based Ordering

A C

ED

B

F

6 7

5

4
2

1

3

c) Perfect OrderingC_in(G) = 0.4, C_out(G) = 0.4 C_in(G) = 0.4, C_out(G) = 1.0

C_in(G) = 1.0, C_out(G) = 1.0

Oshini Goonetilleke, SSDBM 2017

Edge consecutiveness

• Consecutiveness:

– Directed graph G(V,E) and a mapping π : E→ Ζ of edges
to integer ids

– Incoming edge consecutiveness of vertex v,
Cin(v) = no. of pairs of incoming edges with consec. Ids

• Maximization of total consecutiveness of graph G:

Oshini Goonetilleke, SSDBM 2017

Edge Labeling Schemes

• Random

– Edges are listed in an order given by a random
permutation.

• consecIN

– Incoming edges of each node are labeled consecutively,
edge IDs are sorted over the edge target/destination
nodes.

• consecOUT

– Outgoing edges of each node are labeled consecutively,
edgeIDs are sorted over the source nodes.

Oshini Goonetilleke, SSDBM 2017

Proposed: GrdRandom

• Does not favor a single direction

• Consider a random permutation of the nodes
to inform the visit order

• Idea

– alternate between the edge type we number so
that edges in a single direction are not favored

Oshini Goonetilleke, SSDBM 2017

Proposed Method: FlipInOut

• Incorporates 3 ideas:

– Alternate: Flips between numbering incoming and
outgoing edges to balance consecutiveness

– Prioritize: High degree nodes are given higher priority and
are labeled earlier

– Terminate early: For large graphs, order the last |E|x δ%
edges a greedy fashion. Eliminates the frequent restart
problem

• Alternate and Prioritize locally maximize the
individual consecutiveness at a vertex. i.e. C(v)

Oshini Goonetilleke, SSDBM 2017

Evaluation

• Query Performance (runtime and scalability)

– FoF Queries: incoming and outgoing

– Shortest Path: bidirectional bfs

– Edge Property: pattern matching on edges

• Disk I/O performance

• Disk storage benefit

Oshini Goonetilleke, SSDBM 2017

Dataset

• OIR: avg. ratio of outgoing and incoming edges over the total
number of edges

• LCC: number of edges in the largest strong connected component

• ACC: avg. clustering coefficient

Oshini Goonetilleke, SSDBM 2017

Query Performance (1)

Outgoing friend-of-friend Incoming friend-of-friend

Oshini Goonetilleke, SSDBM 2017

Query Performance (2)

Shortest Path Edge Property Query

Oshini Goonetilleke, SSDBM 2017

D
is

k
I/

O
 p

e
rf

o
rm

an
ce

 o
n

 F
lic

kr
incoming friend-of-friend Shortest path

Q
u

e
ry

 p
e

rf
o

rm
an

ce
 o

n
 F

lic
kr

incoming friend-of-friend Shortest path

Oshini Goonetilleke, SSDBM 2017

Disk storage benefit

• 10%–27% reduction compared to a database
with random ordering

• The low compression benefit compared to
other baselines due to disarray of either out
or in bitmaps

Oshini Goonetilleke, SSDBM 2017

Application: Streaming Graph Partitioning

• FlipInOut already has improved locality. Can
graph partitioning benefit from this?

• Partitioning objective

• FlipCut (based on FlipInOut)

– Considers one edge at a time based on three rules

– One pass over the edges O(|E|)

Oshini Goonetilleke, SSDBM 2017

Baseline methods

• Streaming partitioning algorithms

– FENNEL, LDG

• Baselines

– BFS+LDG

– Random+LDG

– Hashing

Oshini Goonetilleke, SSDBM 2017

Results
• Smaller graphs, for k = 4 partitions edgecuts in

FlipCut compared to

– LDG variants: 8% to 42% reduction

– Hashing methods: 26%- 50% reduction

• Larger graphs:

Oshini Goonetilleke, SSDBM 2017

Summary

• Proposed two edge labeling schemes

– GrdRandom and FlipInOut

– Balances and maximize the edge consecutiveness

• Experimentally evaluated the benefit in

– Query performance

– Disk I/O

• Introduced FlipCut

– Effective one-pass graph partitioning

Oshini Goonetilleke, SSDBM 2017

Future Work

• Proving NP-hardness of edge consecutiveness
maximization problem

• Correlation studies between node and edge
orderings

• Analyse other less strict measures such as gap
minimization

• Online edge-labeling for applications such as
graph streaming

 How a full-text search can be seamlessly
integrated into graph traversals within a
graph database system?

 What are the constructs we need to build
indices for this?

11

Social-Textual Query Processing
in Graph Database Systems

Oshini Goonetilleke1, Timos Sellis2, Xiuzhen Zhang1

1 RMIT University
2 Swinburne University of Technology

Australasian Database Conference
May 23-25 2018, Gold Coast, Australia

Graph data
• Graph data from the real-world

– Combination of connections + attributes + text

Social connections

• How can we efficiently query them?

aggregated
attributes

location, position,
URL, joined date
attributes free text

Problem

• GDBMS supports large-scale labeled, attributed multi-graphs
from the real-world
– Neo4j, Titan and many more…
– They are optimized for graph traversals

• Dimensions in a real-world graph are fundamentally supported
by different models:
– Graph topology and its traversals: by GDBMS
– Queries on text: by specialised full-text indexing schemes

• Our goal: Investigate how a full-text search can be seamlessly
integrated into graph traversals within a graph database
system.

Motivation

• Well established methods for graph and text indexing

– Specialised graph indexing schemes, inverted indexes

– Different data management goals

– Do we have convenient ways to seamlessly integrate them?

• Sample query examples:

– LinkedIn: Who’s most likely in my network to introduce me
to someone who is skilled in python?

– Twitter: Finding 5 users who are socially close to a query
user, and who have used terms relevant to #AusOpen?

Outline

• Problem and Motivation

• Problem Definition

• Baseline algorithms

• Proposed Approach

• Experiment results

• Conclusions and future work

Problem Definition
Let G(V,E) be a graph with users represented as v ϵ V and a social interaction
represented as e ϵ E. D(v) denotes the set of keywords associated to v. V(w)
denotes the set of vertices containing the keyword w (where V(w)  V).

• Social proximity:

• Text relevance:

-- denotes the similarity between a query term q.w and D(v) adopting
standard tf-idf model.

• Denominators normalises the respective scores [0,1].

• Combined ranking function:

Top-k Social Textual Ranking Query (kSTRQ)

• kSTRQ, on a graph G(V,E) can be expressed as a triplet
q=(u,w,k) where,

– u ϵ V is the query vertex in G,

– w is a keyword and,

– k is a positive integer denoting the number of output records.

• kSTRQ query returns a result set R that contains k
nodes v ∈ V − {q.u} with the highest f(v) values.

Baseline algorithms
• Text-First Algorithm (TFA)

– Iterates through the text list containing q.w

• Social-First Algorithm (SFA)
– Iterates through users in increasing social distance to q.u

• Early termination variations (TFA_ET and SFA_ET)
– Enables traversing through respective lists partially

• Threshold algorithm (TA) [1]
– Previous algorithms are ignorant of one dimension; may incur

unnecessary traversals
– TA iterates through both lists simultaneously for efficient pruning
– Require sorted and random access to ranked social and text lists

[1] Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci.
66(4), 614–656 (2003)

Proposed PART_TA algorithm

• Partitioned graph + text lists to map to partitions
• Rationale for partitions
• Inspired by the threshold algorithm, running on partitions

• Boundary nodes
• Pre-computation

Experiments

• Neo4j
– allows manipulation of text via Lucene

• Partitioned with METIS [2]
• Effect of parameters by varying

– Preference parameter α (default:0.3)
– number of objects k (default:10)

• Effect of partitions expanded

[2] Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. Journal of
Parallel and Distributed computing 48(1), 96–129 (1998)

• Real datasets with different characteristics

Results: Effects of α (0.1 to 0.5)

• With increasing α, TFA_ET and SFA_ET performs better and worse
respectively (across the datasets)

• PART_TA performs better (76%) compared to TFA_ET and SFA_ET
variations

• Although _ET variations are better
for edge cases, this unstable
behaviour is not suitable for the
general case.

More results

• Results: Effects of k (5 to 20)

– More processing and traversals required for increased k

– Rate of growth higher for early termination variations compared
to PART_TA

• Percentage of partitions expanded
with varying α

– This is indicative of the fraction of
partitions to expand to retrieve top-k

– Examines the effect of the density of
graphs have on expanded partitions

– Refer to paper for details

Conclusions and Future work

• Investigated the kSTRQ query that requires combined graph
traversal and text search in a graph database system.

• Observed better performance and robustness of the proposed
approach, especially on larger graphs

• Future work:

– Investigate the effects of different social and text relevance
metrics

– Explore other partitioning strategies that take into account both
social connections and node attributes (such as text)

– Investigate the effect on varying the number of partitions.

 O. Goonetilleke, T. Sellis, X. Zhang, and S. Sathe, “Twitter Data analytics: A Big
Data Management Perspective”, ACM SIGKDD Explorations, Vol. 16, No. 1, June
2014.

 O. Goonetilleke, S. Sathe, T. Sellis, and X. Zhang, “Microblogging Queries on
Graph Databases: An Introspection”, Proceedings of the 3rd International
Workshop on Graph Data Management Experiences and Systems (GRADES 2015),
SIGMOD 2015 Workshops, Melbourne, Australia, May 2015.

 O. Goonetilleke, D. Koutra, T. Sellis, and K. Liao, “Edge Labeling Schemes for
Graph Data”, Proceedings of the 29th International Conference on Scientific and
Statistical Database Management (SSDBM 2017), Chicago, United States, June
2017.

 O. Goonetilleke, T. Sellis and X. Zhang, “Social-Textual Query Processing on
Graph Database Systems”, Proceedings of the 29th Australasian Database
Conference (ADC 2018), Gold Coast, Australia, May 2018.

 O. Goonetilleke, D. Koutra, K. Liao and T. Sellis, “On effective and efficient graph
edge labeling”, Distributed and Parallel Databases, vol 37, no 1, March 2019.

12

