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 Twitter as a platform for research
 Diverse topics and domains in analysis

▪ Content-based tasks: opinion mining

▪ Analytics on the stream: event detection 

▪ Offline processing : spread of pandemics…

 Ad-hoc mechanisms to capture, store and 
query and analyze twitter data
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1. What are the requirements of a data 
management framework for Twitter?

2. How can twitter data be modeled in a suitable 
representation with twitter-specific properties?

3. What is the appropriate storage mechanism of 
a large graph on-disk?  

4. How can indexes speed up graph queries? 
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 What are the requirements of a data 
management framework for Twitter? 

▪ How do existing systems primarily collect, 
represent and query twitter data? 

▪ What are the essential components for an 
integrated data management framework 
for Twitter?

5



• Tools that systematically capture data using any one of the Twitter APIs

• Third Party libraries, data resellers, Focused crawlers

1) Data collection

• Module for crawling tweets + support for pre-processing, information 
extraction and/or visualization capabilities

• Generic platforms, Application Specific platforms, Visualizations

2) Data Management Frameworks

• Provides a set of primitives beneficial in exploring the Twittersphere 
along different dimensions. 

• Generic Languages, Tweet Search, Languages for Social Networks

3) Query Languages and Systems
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 Data Model
▪ Existing data models do not proactively capture twitter 

interactions – user-user / tweet-tweet / user-tweet
▪ Objective: A graph-view of the Twittersphere capturing 

Twitter interactions

 Query system
▪ Existing systems do not operate on Twitter Graphs –

modeled as either relational or RDF
▪ Objective: Declarative query system tailored for 

querying tweets and its interactions. 

 Challenges: management of very large graphs and 
optimize queries for large networks. 
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 How can twitter data be modeled in a suitable 
representation with twitter-specific properties? 

▪ How can Twittersphere be modeled for graph 
traversals? 

▪ What are the types of queries that can be executed 
using graph and non-graph constructs? 

▪ How do queries perform on existing data management 
systems that use graph structures to represent data? 
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Background and Motivation

• Increasing applications consume twitter data
– Requirement of an integrated framework

• Need for efficient querying and management of 
large collections of twitter data modeled as graphs

• In this study:
– Model basic elements of Twittersphere as graphs

– Data Ingestion capabilities working with a large dataset

– Determine the feasibility of running a set of proposed queries

• Twitter Data modeled as  labeled directed  multi-
graphs
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Graph Data Management Systems

• Natural way to analyze graph data
• Popular open source graph DBMS: Neo4j and Sparksee
• Neo4j

– Fully transactional, ACID compliant
– Methods of interaction: Declarative query language, Core 

API

• Sparksee
– Support for APIs in many languages
– Bit-map based representation of graphs on-disk
– Primary navigation operations: neighbors and explode
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Query Translation Example
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Neo4j Cypher Sparksee API

Recommendation Query:
Top-n followees of A’s followees who A 
is not following yet
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Database Schema for Twitter case study

Nodes Relationships

user 24,789,792 follows 284,000,284

tweet 24,000,023 posts 24,000,023

hashtag 616,109 mentions 11,100,547

tags 7,137,992

Total 49,405,924 Total 326,238,846GRADES 2015 5

3 Node Types, 4 Relationship types

Initial Dataset contain: users, tweets and follows relationships



Experiments

• Feasibility Analysis of
– Data Ingestion 
– Query Processing

• Configuration
– Standard Intel Core 2 Duo 3.0 GHz
– 8GB of RAM
– Non-SSD HDD

• Version of the databases
– Sparksee 5.1, research license up to 1 billion objects
– Neo4j 2.2.M03, Community Edition
– Java APIs for both databases
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Data Ingestion

• Simulate batch loading procedures of a graph
– Neo4j Import tool

• Effectively manages memory

• Cannot create indexes while loading

– Sparksee scripts
• Recovery and rollback disabled

• Cache size: 5GB

• Extent size: 64KB

• Neighbors not materialized

• Cannot perform incremental loading
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Neo4j
Total Time  : 45 min
Size on disk: 20.8 GB

Sparksee
Total Time  : 72 min
Size on disk: 15.1 GB

Figure 1

Figure 2



Query Workloads

• Set of representative queries that are useful in 
the microblogging context

• Basic 
1. Select
2. Adjacency

• Advanced
3. Co-occurrence
4. Recommendation
5. Influence
6. Shortest path
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Query Processing - Examples

• Select

– All Users with a follower count greater than a 
user-defined threshold

• Adjacency

– 1-hop: All the followees of a given user A

– 2-hop: All the Tweets posted by followees of A

– 3-hop: All the hashtags used by followees of A

GRADES 2015 10
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Co-occurrence queries
• Co-occurrence of hashtags and mentions

• Finding co-occurrences translates to a 2-step process:

• Examples:
– Q3.1: Top-n users most mentioned with user A

– Q3.2: Top-n most co-occurring hashtags with hashtag H
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Recommendation Queries
• Recommendation from a user’s local community

• Only top-n most frequently followed users are considered relevant

• Examples:
– Q4.1: Top-n followees of A’s followees who A is not following yet

– Q4.2: Top-n followers of A’s followees who A is not following yet
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Influence Queries
• Current and potential influence a user has on its 

community

• An intuitive translation of this query as a function of user 
mentions:
– Current influence of A is a union of the two sets: Most frequent users who 

mention A and who are already followers of A

– Potential influence: Difference of the two sets

• Examples:
– Q5.1: Top-n users who have mentioned A who are followees of A

– Q5.2: Top-n users who have mentioned A but are not direct followees of A
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Other queries
• Shortest-path queries

– Shortest path between two users where they are 
connected by follows edges

• Deriving new queries

• Suppose you want to answer this question:
– user A is interested in topic H who should A follow?

• Combine:
1. Get all the hashtags that co-occur with the given hashtag H

2. Get the most retweeted tweets mentioning those hashtag

3. Get the original users of those retweets 

4. Order the users based on the shortest path length from A
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Observations

• Alternate Solutions
– Cypher vs. Neo API
– Performance differences in Cypher queries
– Sparksee Traversals vs. Navigation operations

• Overhead of aggregates
– Retrieving the top-n results
– factors for increased performance: remove ordering 

and de-duplication, limiting results
– Sparksee: no way to limit the result set

• Problems with cold-cache
– Warm-up time for Neo4j caches
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Conclusions and Future Work

• Extension to other domains where a similar 
schema is applicable (Facebook, LinkedIn etc.)

• Not tested for offline graph analytics

• Database tuning for optimal configuration to 
suit query workloads

• Generation of the graph on-the-fly
– Testing for update workloads

• Semantic-aware strategies to speed up the 
queries by graph partitioning and storage
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 What is the appropriate storage mechanism 
of a large graph on-disk? 

▪ How can we partition the graph such that the I/O 
can be minimized for known query workloads? 

▪ What is a suitable representation of a graph on 
disk?
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Background

• Graph data is everywhere!

• Management and analysis of networked-data

– Data storage, management, querying

• Tools

– GDBMS – Neo4j, Sparksee

– Network analysis packages – SNAP, NetworkX

• Graph representation

– Matrix, Adjacency node/edge lists
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Improving query performance

• Node re-ordering

– SlashBurn, Shingle

• Graph compression

• Graph partitioning, clustering

– METIS
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Motivation
Node id

 1,4,11,16 2,3,7

Index on incident edges 

on nodes

1, <p1,v1>, <p2,v2>, <p3,v3>, ... 

2, <p1,v1>, <p2,v2>, <p3,v3>, …

3, <p1,v1>, <p2,v2>, <p3,v3>, …

….

8, <p1,v1>, <p2,v2>, <p3,v3>, …

9, <p1,v1>, <p2,v2>, <p3,v3>, …

…

11, <p1,v1>, <p2,v2>, <p3,v3>, …

12, <p1,v1>, <p2,v2>, <p3,v3>, …

....

Data file on disk sorted by edge id

(edge ids followed by all its properties)

Edge ids

Page 1

Page 4

Page 5

Goal: Assign edge labels to achieve improved disk locality for efficiently
answering typical neighborhood queries, without modification to the storage
internals of the graph system.
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Objectives

• Given a directed graph, how should we label both its 
outgoing and incoming edges to achieve better disk 
locality and optimize neighborhood-related queries? 

- Can we speed up popular edge-based neighborhood graph 
queries using an edge labeling? 

- Can we observe improved disk I/O as a result of better 
locality when storing graph on disk? 

- Do better edge labeling schemes show benefit in storage
compared to a random ordering and other baselines

- Can  streaming graph partitioning benefit from an already 
locality improved edge-list?
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Sparksee

• Bit-map based representation
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Outline

• Background and Motivation

• Edge consecutiveness

• Baselines and proposed method

• Experiment Results

• Application: Graph streaming

• Conclusions and Future work
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The effect of different ordering strategies

A C

ED

B

F

6 3

1

4
2

5

7

A C

ED

B

F

1 2

6

7
3

4

5

a) Random Ordering b) Source-based Ordering

A C

ED

B

F

6 7

5

4
2

1

3
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Edge consecutiveness

• Consecutiveness:

– Directed graph G(V,E) and a mapping π : E→ Ζ of edges 
to integer ids

– Incoming edge consecutiveness of vertex v, 
Cin(v) = no. of pairs of incoming edges with consec. Ids

• Maximization of total consecutiveness of graph G:
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Edge Labeling Schemes

• Random

– Edges are listed in an order given by a random 
permutation. 

• consecIN

– Incoming edges of each node are labeled consecutively, 
edge IDs are sorted over the edge target/destination 
nodes. 

• consecOUT

– Outgoing edges of each node are labeled consecutively, 
edgeIDs are sorted over the source nodes.
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Proposed: GrdRandom

• Does not favor a single direction

• Consider a random permutation of the nodes 
to inform the visit order

• Idea

– alternate between the edge type we number so 
that edges in a single direction are not favored
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Proposed Method: FlipInOut

• Incorporates 3 ideas:

– Alternate: Flips between numbering incoming and 
outgoing edges to balance consecutiveness

– Prioritize: High degree nodes are given higher priority and 
are labeled earlier

– Terminate early: For large graphs, order the last |E|x δ% 
edges a greedy fashion. Eliminates the frequent restart 
problem

• Alternate and Prioritize locally maximize the 
individual consecutiveness at a vertex. i.e. C(v)
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Evaluation

• Query Performance (runtime and scalability)

– FoF Queries: incoming and outgoing

– Shortest Path: bidirectional bfs

– Edge Property: pattern matching on edges

• Disk I/O performance

• Disk storage benefit
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Dataset

• OIR: avg. ratio of outgoing and incoming edges over the total 
number of edges 

• LCC: number of edges in the largest strong connected component 

• ACC: avg. clustering coefficient 
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Query Performance (1)

Outgoing friend-of-friend Incoming friend-of-friend
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Query Performance (2)

Shortest Path Edge Property Query
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Disk storage benefit

• 10%–27% reduction compared to a database 
with random ordering

• The low compression benefit compared to 
other baselines due to disarray of either out 
or in bitmaps
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Application: Streaming Graph Partitioning

• FlipInOut already has improved locality. Can 
graph partitioning benefit from this?

• Partitioning objective

• FlipCut (based on FlipInOut)

– Considers one edge at a time based on three rules

– One pass over the edges O(|E|)
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Baseline methods

• Streaming partitioning algorithms

– FENNEL, LDG

• Baselines

– BFS+LDG

– Random+LDG

– Hashing
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Results
• Smaller graphs, for k = 4 partitions edgecuts in 

FlipCut compared to

– LDG variants: 8% to 42% reduction

– Hashing methods: 26%- 50% reduction

• Larger graphs:
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Summary

• Proposed two edge labeling schemes

– GrdRandom and FlipInOut

– Balances and maximize the edge consecutiveness

• Experimentally evaluated the benefit in

– Query performance

– Disk I/O

• Introduced FlipCut

– Effective one-pass graph partitioning
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Future Work

• Proving NP-hardness of edge consecutiveness 
maximization problem

• Correlation studies between node and edge 
orderings 

• Analyse other less strict measures such as gap 
minimization

• Online edge-labeling for applications such as 
graph streaming



 How a full-text search can be seamlessly 
integrated into graph traversals within a 
graph database system? 

 What are the constructs we need to build 
indices for this?
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Graph data
• Graph data from the real-world

– Combination of connections + attributes + text

Social connections

• How can we efficiently query them?

aggregated 
attributes 

location, position, 
URL, joined date
attributes free text



Problem

• GDBMS supports large-scale labeled, attributed multi-graphs 
from the real-world 
– Neo4j, Titan and many more…
– They are optimized for graph traversals

• Dimensions in a real-world graph are fundamentally supported 
by different models:
– Graph topology and its traversals: by GDBMS
– Queries on text: by specialised full-text indexing schemes

• Our goal: Investigate how a full-text search can be seamlessly 
integrated into graph traversals within a graph database 
system.



Motivation

• Well established methods for graph and text indexing

– Specialised graph indexing schemes, inverted indexes

– Different data management goals

– Do we have convenient ways to seamlessly integrate them?

• Sample query examples:

– LinkedIn: Who’s most likely in my network to introduce me 
to someone who is skilled in python?

– Twitter: Finding 5 users who are socially close to a query 
user,  and who have used terms relevant to #AusOpen? 



Outline

• Problem and Motivation

• Problem Definition

• Baseline algorithms

• Proposed Approach

• Experiment results

• Conclusions and future work



Problem Definition
Let G(V,E) be a graph with users represented as v ϵ V and a social interaction 
represented as e ϵ E. D(v) denotes the  set of keywords associated to v. V(w) 
denotes the set of vertices containing the keyword w (where V(w)  V).

• Social proximity:

• Text relevance:

-- denotes the similarity between a query term q.w and D(v) adopting 
standard tf-idf model. 

• Denominators normalises the respective scores [0,1].

• Combined ranking function:



Top-k Social Textual Ranking Query (kSTRQ)

• kSTRQ, on a graph G(V,E) can be expressed as a triplet 
q=(u,w,k) where, 

– u ϵ V is the query vertex in G,

– w is a keyword and,

– k is a positive integer denoting the number of output records.

• kSTRQ query returns a result set R that contains k 
nodes v ∈ V − {q.u} with the highest f(v) values.



Baseline algorithms
• Text-First Algorithm (TFA)

– Iterates through the text list containing q.w

• Social-First Algorithm (SFA)
– Iterates through users in increasing social distance to q.u

• Early termination variations (TFA_ET and SFA_ET)
– Enables traversing through respective lists partially

• Threshold algorithm (TA) [1]
– Previous algorithms are ignorant of one dimension; may incur 

unnecessary traversals
– TA iterates through both lists simultaneously for efficient pruning
– Require sorted and random access to ranked social and text lists

[1] Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 
66(4), 614–656 (2003)



Proposed PART_TA algorithm

• Partitioned graph + text lists to map to partitions
• Rationale for partitions
• Inspired by the threshold algorithm, running on partitions

• Boundary nodes
• Pre-computation



Experiments

• Neo4j
– allows manipulation of text via Lucene

• Partitioned with METIS [2]
• Effect of parameters by varying 

– Preference parameter α (default:0.3)
– number of objects k (default:10)

• Effect of partitions expanded

[2] Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. Journal of 
Parallel and Distributed computing 48(1), 96–129 (1998)

• Real datasets with different characteristics



Results: Effects of α (0.1 to 0.5)

• With increasing α, TFA_ET and SFA_ET performs better and worse 
respectively (across the datasets)

• PART_TA performs better (76%) compared to TFA_ET and SFA_ET
variations

• Although _ET variations are better
for edge cases, this unstable 
behaviour is not suitable for the 
general case.



More results

• Results: Effects of k (5 to 20)

– More processing and traversals required for increased k

– Rate of growth higher for early termination variations compared 
to PART_TA

• Percentage of partitions expanded
with varying α 

– This is indicative of the fraction of 
partitions to expand to retrieve top-k

– Examines the effect of the density of
graphs have on expanded partitions

– Refer to paper for details



Conclusions and Future work

• Investigated the kSTRQ query that requires combined graph 
traversal and text search in a graph database system. 

• Observed better performance and robustness of the proposed 
approach, especially on larger graphs

• Future work:

– Investigate the effects of different social and text relevance 
metrics 

– Explore other partitioning strategies that take into account both 
social connections and node attributes (such as text)

– Investigate the effect on varying the number of partitions. 
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