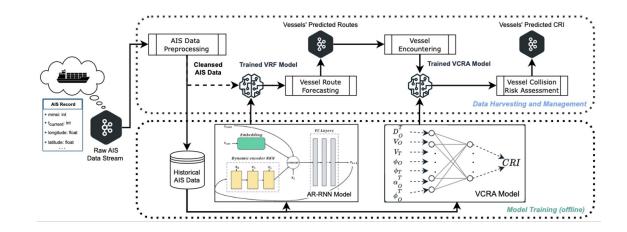


Collision Risk Assessment and Forecasting on Maritime Data (Industrial Paper)


Andreas Tritsarolis¹, Brian Murray², Nikos Pelekis¹, and Yannis Theodoridis¹

¹Data Science Lab., University of Piraeus {andrewt, npelekis, ytheod}@unipi.gr

²Department of Energy & Transport, SINTEF Ocean brian.murray@sintef.no

Outline

- 1. Introduction & Related Work
- 2. Our Contribution (at a glance)
- 3. Problem Formulation
 - Vessel Collision Risk Assessment (VCRA)
 - Vessel Collision Risk Forecasting (VCRF)
- 4. Experimental Study
 - Datasets and Preprocessing
 - Experimental Results
 - Discussion on VCRA/F Model Transparency
- 5. Conclusions & Future Work

Introduction

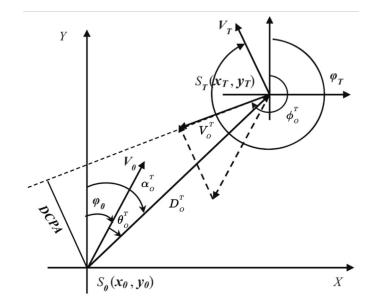
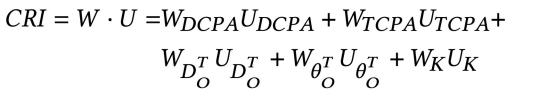

- MDA task at hand: Assess the collision risk of vessels that are in an encountering process, either at present (hence, VCRA) or at a future time (hence, VCRF)
 - ... via a measure called Collision Risk Index (CRI)
- Accurate VCRA/F \rightarrow critical operation
 - see e.g., Unmanned Surface Vessels (USVs)
- Model complexity → Trade-off between quality and responsiveness
 - ML models may balance this trade-off by providing accurate and timely results

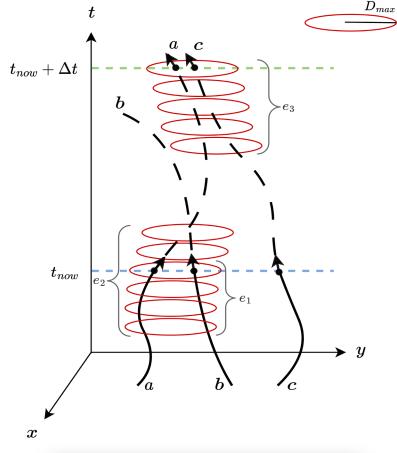
image source: ntnu.edu

Related Work

- Formulaic vs. Deep Learning approaches
 - Kinematic CRI equations combined with ML models (e.g., SVM)
- VCRA related work: Combine CRI equations with...
 - ... SVM (Gang et al. 2016)
 - ... CART (Li et al. 1018)
 - ... RVM (Park & Jeong, 2021)
- VCRF related work: Predict CRI via...
 - Bi-LSTM \w Attention (Ma et al. 2020)

Vessel collision geometry diagram, adapted from (Gang et al. 2016)

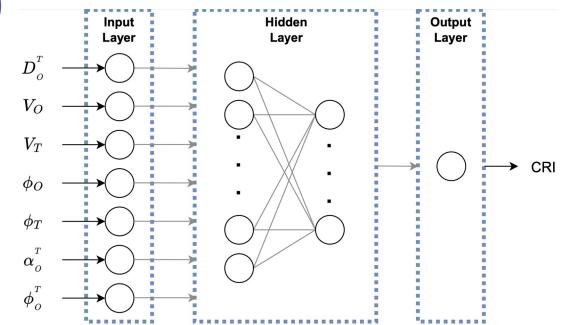

- Gang et al. (2016) Estimation of vessel collision risk index based on support vector machine. Advances in Mechanical Engineering, 8(11).
- Li et al. (2018) Calculation of Ship Collision Risk Index Based on Adaptive Fuzzy Neural Network. Proc. MSAM.
- Park & Jeong (2021) An Estimation of Ship Collision Risk Based on Relevance Vector Machine. J. Marine Science & Engineering, 9(5).
- Ma et al. (2020) A Data-Driven Approach for Collision Risk Early Warning in Vessel Encounter Situations Using Attention-BiLSTM. IEEE Access, 8.

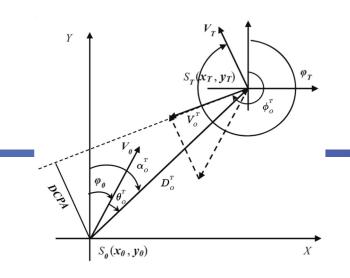

Our Contribution (at a glance)

- Our contribution consists of:
 - An ML-based method to address the VCRA problem
 - ...which outperforms related work by a significant margin
 - A DL-based method to address the VCRF problem
 - ...via Vessel Route Forecasting (VRF) algorithms
- Our experimental study, using a large-volume real-world maritime dataset (Norway), verifies:
 - The efficacy of our approach w.r.t. efficiency and effectiveness
 - Its soundness w.r.t. further decisions made
 - ...hence, its value towards a unified framework able to monitor and uphold traffic safety

Problem Formulation

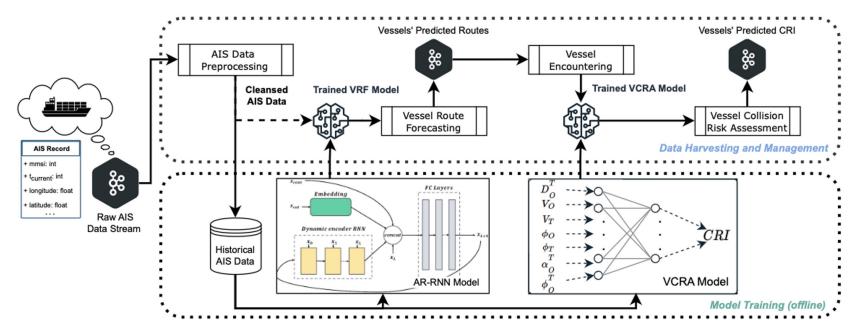
- Recall the problem: Assess the collision risk of vessels that are in an encountering process, either at present (hence, VCRA) or at a future time (hence, VCRF)
 - In a nutshell, assess the Collision Risk Index (CRI) of a pair of vessels
 - Encountering Process: Two vessels, own (O) and target (T), are in an encountering process when their distance is lower than a threshold and monotonically decreasing for at least some time period.



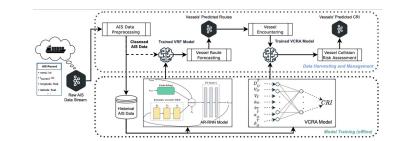


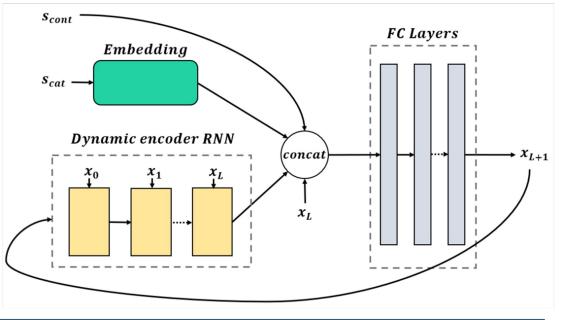
Example: VCRA detects encountering e_1 (a,b), whereas VCRF detects encounterings e_2 (a,b) and e_3 (a,c).

Problem Formulation: VCRA


- What: Assess a Point of Approach (CPA) -based Risk Index
 - Calculate the risk of collision given the vessels' kinematic characteristics (ground truth)
- How: Train an ML model (e.g., MLP) over a <V_Ω, V_T, CRI> dataset
 - V_o, V_T: Motion vector (speed, direction, etc.) of the two vessels
- wrt. related work:
 - Higher CRI assessment accuracy
 - Lower inference latency

Problem Formulation: VCRF (1/2)


- What: Predict the encountering vessels' CRI in a short-term horizon
- **How**:
 - 1st) predict the vessels' future locations;
 - 2nd) assess CRI on the predicted locations



• Architecture: orthogonal w.r.t. underlying VCRA and VRF models ...

Problem Formulation: VCRF (2/2)

- VCRF architecture
 - Underlying VRF: AR-RNN (Murray & Perera, 2021)
- Methodology:
 - For a given region of interest, group routes with common origins and destinations (each O-D group → AR-RNN)
 - Given a vessel's O-D, select the respective AR-RNN to forecast its future trajectory
 - If no route available, train a single model (caveat: reduced prediction fidelity)

• Murray & Perera (2021) An AIS-based deep learning framework for regional ship behavior prediction. Reliability Engineering & System Safety, 215.

Experimental Study (1/4)

- Dataset: Norway (NCA)
 - 8.4M transmitted AIS locations from 732 vessels (Jan. 2019)
- Preprocessing
 - Noise elimination (drop records with speed > 50 knots)
 - Trajectory segmentation
 - (1) port-to-port segmentation
 - (2) temporal gap segmentation ($\Delta t > 30$ min.)
 - Fixed rate resampling (one signal every 30 sec.)

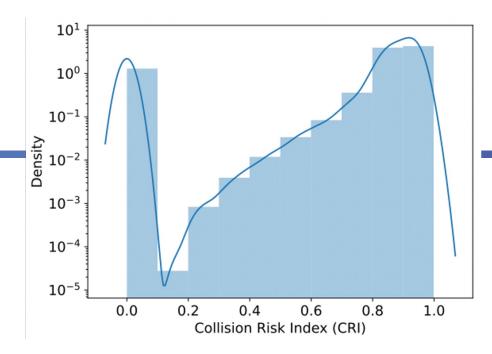
 Norwegian Coastal Administration (NCA) Historical AIS data in Norwegian waters. URL: <u>https://ais-public.kystverket.no/ais-download</u> inapshot of the Norway dataset

Snapshot of the Norway dataset on Jan. 10th, 2019

#Records	8,352,352
#Vessels	732
#Segments	7267
<pre>#Points per Segment (min; med.; avg.; max.)</pre>	20; 172; 1153; 77759
Vessels' Speed (min; avg.; max.)	0; 3; 50 knots
Sampling Rate	30 sec.

Experimental Study (2/4)

- Experimental results @35% of the dataset
 - VCRA/F clearly outperforms related work
 - up to 70%, in terms of R² score
 - Iow RMS[Log]E \rightarrow Our model has less tendency to underestimate danger

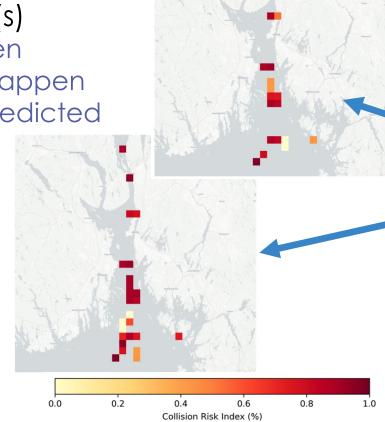

	MAE	RMSE	RMSLE	R ²
Gang et al. [12]	0.1194	0.1969	0.1452	0.5766
Li et al. [18]	0.0395	0.1165	0.0853	0.8517
Park et al. [29]	0.1272	0.1936	0.1379	0.5906
VCRA/F	0.0246	0.0607	0.0440	0.9597

- Experimental results @100% of the dataset (in particular, vs. Li et al.)
 - Confident predictions on low (< 0.2) and high (> 0.6) CRI
 - CRI ∈ (0.2, 0.4] tends to be assessed as (0.4, 0.6]

	[0,0.2]	(0.2, 0.4]	(0.4, 0.6]	(0.6, 0.8]	(0.8, 1]
Li et al. [18]	0.1795	0.0663	0.0675	0.0585	0.0389
VCRA/F	0.0869	0.0760	0.0496	0.0312	0.0215

Experimental Study (3/4)

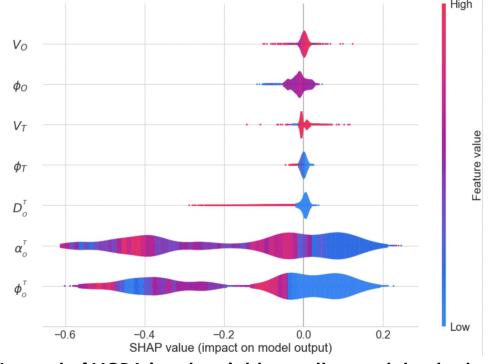
- In terms of latency using the most populated timeslice of the dataset
 - VCRA significantly outperforms related work
 - response time: 0.22 msec. (± 110 µsec.)
 - ... also outperforms CRI formula calculation
 - response time: 2.30 msec. (± 47 µsec.)
- As such, feasible alternative for real-time streaming frameworks



Method	Latency ($\mu \pm \sigma$)
CRI Formula (Eq. 1)	2.30 msec. $\pm 47\mu$ sec.
Gang et al. [12]	43.4 msec. \pm 430 μ sec.
Li et al. [18]	3.38 msec. $\pm 56\mu$ sec.
Park et al. [29]	0.29 msec. $\pm 45\mu$ sec.
VCRA/F	0.22 msec. ±110µsec.

Experimental Study (4/4)

- Evaluating the accuracy of VCRF
- Method: match predicted vs. actual encounter(s)
 - True Positive (TP): predicted encounter did happen
 - False Positive (FP): predicted encounter did not happen
 - False Negative (FN): actual encounter was not predicted
- Experiment:
 - Oslo Fjord: 36 actual vs. 26 predicted encounters
 - Results: 24 TP encounters; 2 FP encounters; 12 FN encounters
 - Overall Accuracy \rightarrow 77%


Flor E high-risk Oslo within the cted 5 est inter đ 0 0 areas 5 Visualization CRI) ð terms

 $Sim(EP_{pred}, EP_{act}) = \frac{Interval(EP_{pred}) \cap Interval(EP_{act})}{Interval(EP_{pred}) \cup Interval(EP_{act})}$

VCRA/F Model Transparency (1/2)

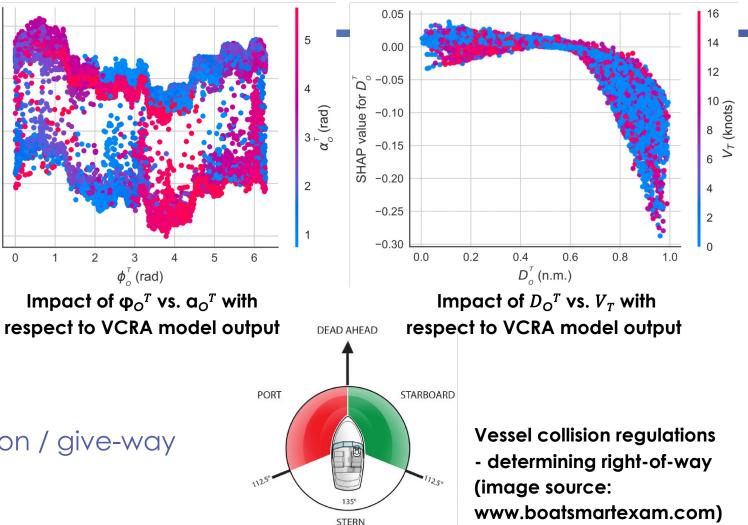
- SHAP Values
 - Random subset of test set
- Findings:
 - Speed ($V_{O,T}$) and Direction ($\phi_{O,T}$)... ...**minor impact** on CRI calculation
 - Distance (D_0^T) , Azimuth (α_0^T) , Rel. Bearing (ϕ_0^T)**major impact** on CRI calculation
 - Proximity / relative positioning
- In accordance with the vessel collision regulations / providence measures (see next slide)

Impact of VCRA input variables on the model output

VCRA/F Model Transparency (2/2)

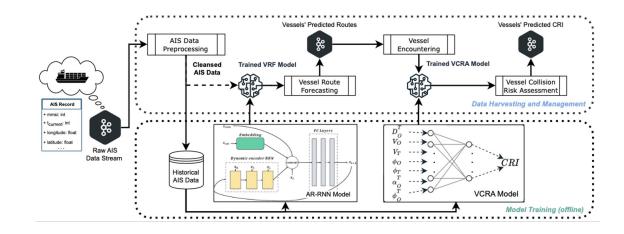
0.2

0.0


-0.2

-0.4

-0.6


SHAP value for $\pmb{\phi}_o^{^T}$

- Findings (cont.)
 - D_0^T increases \rightarrow CRI decreases • $D_0^T > 0.7$ n.m.
 - $\phi_0^T / \alpha_0^T \rightarrow$
 - Correlated features
 - $\phi_0^T \le \pi, \ \alpha_0^T \ge \pi$ $\rightarrow CRI \text{ increases}$
 - $\phi_0^T > \pi, \alpha_0^T \ge \pi$ $\rightarrow CRI$ decreases
 - Compliant with the stand-on / give-way rules in maritime

Conclusions & Future Work

- In summary:
 - We proposed VCRA/F, a modular framework for short-term CRI forecasting
 - Our approach outperforms related work
 - higher accuracy; lower latency
- In the near future:
 - Advanced VRF models; VA tool
- Long-term goals:
 - Federated Learning \rightarrow preserve vessel owners' privacy
 - Lifelong Learning \rightarrow facilitate gradual model improvement

VCRA/F Code available @GitHub: https://github.com/DataStories-UniPi/VCRA

More information about our Maritime research agenda: <u>https://www.datastories.org/maritime/</u>

Thank you for your attention! I'll be glad to answer your questions!

This work was supported in part by EU Horizon 2020 R&I Programme under

Grant Agreement No. 957237 (project VesselAI, vessel-ai.eu).