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When Mobile Crowd Sensing meets Big Data

© Widespread use of GPS and other built-in sensors.
© Emerging portable environmental sensors.

--> Mobile Crowd Sensing (MCS) is a new paradigm for the collection of spatio-
temporal data series.

Air quality monitoring is a typical example
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General Objectives
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© The recruited participants collect air quality measurements such as
Particulate Matters, NO2, Black Carbon, Temperature and Humidity.

© Data acquisition is based on a sensor kit and a mobile device.

© Mobile Apps are used to collect GPS logs and the micro-environment
of the participant (also called self-reporting) of the participant
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Problem Statement & Objectives

© Problems :

® the context annotation is by far the most difficult information to collect in a real-life
application setting.

® Not all the participants thoroughly annotate their micro-environment.
10 Ambient air observations strongly depend on the context.

© Objective: Automatically detect the participants contexts.
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Problem Statement & Objectives

A\

Micro-environments preserve a Inter-sensor correlation

certain pattern.
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Main Contributions

© Multi-variate time series collected by the MCS campaigns not only
depend on the microenvironment but could be a proxy of it..

‘ How much a
How to combine all these model can
different aspects of the data \ discriminate
(geo-location, sensors) to the ,
identify the user's context observations in /
automatically? different micro- / yE
environments? -

Contribution: Evaluate different approaches and provide a framework for
micro-environment recognition
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|. State-of-the-art

Smart Homes Activities

[1]

Daily Human Activities

[2][3]

Human Mobility [4][5]

Multivariate Time Series
Classification (MTSC)

Generic MTSC method

Human Activity Recognition

Multi-view Learning

[1] Aminikhanghahi et Cook 2019. Enhancing activity recognition using CPD-based activity segmentation.

[2] Zhang et Sawchuk 2012. Motion primitive-based human activity recognition using a bag-of-features approach.

[3] Cho et Yoon 2018. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.

[4] Do et Gatica-Perez 2014. The Places of Our Lives: Visiting Patterns and Automatic Labeling from Longitudinal Smartphone Data.
[5] Zheng et al. 2008. Understanding mobility based on GPS data.
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|. State-of-the-art

MTSC: labelling data segments with the type of activity

e Distance-based methods [6].
e Feature-based methods [7].
* Ensemble methods [8].
e Deep learning methods [9]

e MLSTM-FCN [10].

Multi-view Learning: classify time series data originated

from multiple sensors

e Authors in [8] proposed a multi-view stacking generalization approach for
fusing audio and accelerometer sensor data for human activity recognition.

¢ Discriminative Bilinear Projection Approach was proposed by [11].

[6] Berndt et Clifford 1994. Using dynamic time warping to find patterns in time series.

[7] Parkka et al. 2006. Activity classification using realistic data from wearable sensors.

[8] Garcia-Ceja, Galvan-Tejada, et Brena 2018. Multi-view stacking for activity recognition with sound and accelerometer data.
[9] Fawaz et al. 2019. Deep learning for time series classification: a review.

[10] Karim et al. 2019. Multivariate LSTM-FCNs for Time Series Classification.

[11] Li, Li, et Fu 2016. Multi-View Time Series Classification: A Discriminative Bilinear Projection Approach.
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[1. Micro-Environment Recognition Model
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[1.1. Data Preparation

© Data pre-processing: data de-noising (including GPS) & missing data imputation.

© 3 indoor or outdoor activities to recognize : Home, Office, Street, Restaurant, Bus,
Car, Store and Train.

© Splitting data into samples of at most 10 min length.
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Imbalanced Data

Q Indoor activities (mainly “Home” and “Office”) are the majority classes
(participants spent more time in these micro-environments).

© Resampling strategy: smooth the imbalanced data using random over/under-

sampler.
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[1.2. Our Approach

' ™

We used a multi-view stacking
generalization[8] approach.

- i

We train a model for each
view (KNN with DTW).

k J b

' Combine the results by
training a meta-learner

classifier.
¢

[8] Garcia-Ceja, Galvan-Tejada, et Brena 2018. Multi-view stacking for activity recognition with sound and accelerometer data.
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[1.2. Our Approach
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[11. Experiments

O Environmental crowd sensing data collected over 7 days by data
six participants who have thoroughly annotated their activities
within the campaign.

— 70% of data is used for training.
— 30% of data is used for testing.
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III. Meta Learner’s Output

\ | N

[
> o . q . . .
o2 Predicted Predicted Predicted Predicted Predicted Predicted
1 S
? 3 class class class class class class
T —
Meta learner
. Humidity NO2 BC PM1.0 PM2.5 PM10 Speed
Temperature Humidity NO2 BC PM1.0 PM2.5 PM10 Speed Temperature L. . . . .. .. L. True
L. L. L. L. L. - L. L. L. Prediction Prediction Prediction Prediction Prediction Prediction Prediction
Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction . . . . . . . Label
Probability Probability Probability Probability Probability Probability Probability
5 5 3 5 5 5 5 0.28 0.44 0.64 0.51 0.41 0.48 0.6 0.65 5
1 8 1 1 1 8 0.56 0.61 0.41 1 0.71 0.77 0.65 0.48 8
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[11. Experimental Results

Model Condition Accuracy
O Baselines: Speed 0.450
© KNN classifier with DTW metric (2NN- kNN-DTW  Nospeed 0440
: Speed & Re-smp. 0.587
DTW), as state-of-the-art technique. , )
) o No speed & Re-smp. 0.597
© We implemented MLSTM-FCN [10], as it is Speed T
a multi-variate time series classifier. .q“ q ﬂ'ﬂ 0
- - Multi-view Based 0 Spee '
© Multi-view Based: our proposed Speed & Re-smp. | 0729
approach. No speed & Re-smp. |  0.640
Speed 0.808
! : No speed 0.784
A :
MLSTAMECN Speed & Re-smp. 0.703
No speed & Re-smp. |  0.691

[10] Karim et al. 2019. Multivariate LSTM-FCNs for Time Series Classification.
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[11. Experimental Results

Algorithm Accuracy On Each View and On Multi-View
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[11. Experimental Results (KNN+RF)

250 250
Confusion Matrix (Resampled data without speed) Confusion Matrix (Resampled data with speed)
Street 52 1 0 0 3 1 2 4 Street 54 2 0 0 2 1 3 1
200 200
Bus 8 &0 0 0 2 0 3 2 Bus 5 67 0 0 0 0 1 2
Office 3 0 %9 1 27 0 1 0 Dffice 2 0 102 1 5 0 0 1
150 150
- Restaurant 0 0 4 46 18 1 0 o _ Restaurant 0 0 5 51 13 0 0 0
2 2
- =2
2 ) w
Home 2 0 1 6 2 1 0 = Home 2 0 14 4 2 1 0
- 100 + 100
5 3 1 0 14 7 1
Gar &l Car 3 2 1 0 12 58 3 2
Store 4 0 0 0 4 1 54 (]
Store 4 0 0 0 3 1 55 0
r 50
- 50
Tain 2 0 0 0 2 0 T 43
Tain 3 1 0 0 0 1 4 45
Straleet BL‘IS Office  Restaurant Home Car Store 'i'alm r r ~ - T r r T
Predicted label Street Bus Office  Restaurant Home Car Store Tain
0 Predicted label
—L0
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[11. Experimental Results (RF+RF)

250
Confusion Matrix (Resampled data without speed) Confusion Matrix (Resampled data with speed) 250
Street 56 1 0 0 3 0 2 1 Street 54 3 0 0 1 1 3 1
Bus 4 69 0 0 1 0 0 1 200 Bus 0 7] 0 0 2 1 0 0 200
Office{ 0 0 110 1 19 1 0 0 Office 0 0 120 0 1n 0 0 0
150
_ Restaurant{ 0 0 0 60 8 1 0 0 Restaurant 0 0 0 61 B 0 0 0 150
z z
= s
LY "]
= =
Home{ O 0 10 1 3 0 0 Home 0 0 5 1 0 0 0
100 | 100
car{ 3 0 0 0 6 68 3 1 Car 0 0 0 0 6 n 1 2
Store 4 4 0 0 0 0 0 59 0 Store 0 1 0 0 0 0 61 1
L 50 F 50
Tain{ 0 0 0 0 1 0 0 53 Fain 2 0 0 0 0 0 0 52
Street Bus Office  Restaurant Home Car Store Tain stréet BL‘IS Dﬁ.\ce Resta.uram Ho;ﬂe Cér Sto.re 'ralln
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[11. Experimental Results

Our approach (KNN+RF) Our approach (RF+RF)
Class Precision Recall F Score Class Precision Recall F Score
Street 0684 0.825 0.748 Street 0.836 0.889 0.862
8 Bus 0.938 0.800 0.863 Bus 0.986 0.920 0.952
8_ Office 0.861 0.756 0.805 Office 0917 0.840 0.876
g Restaurant 0.868 0.667 0.754 Restaurant 0.968 0.870 0.916
8 Home 0.782 0.919 0.845 Home 0.872 0.949 0.909
E Car 0909 0617 0.735 Car 0.932 0.840 0.883
§ Store 0.720 0.857 0.783 Store 0.922 0.937 0.929
Train 0.860 0.796 0.827 Train 0.946 0.981 0.964
Class Precision Recall F Score Class Precision Recall F Score
Street 0.740 0.857 0.794 Street 0.964 0.857 0.908
= Bus 0931 0.893 0.912 Bus 0.947 0.960 0.954
% Office 0.836 0.779 0.806 Office 0.960 0.916 0.938
o Restaurant 0911 0.739 0.816 Restaurant 0.984 0.884 0.931
2 Home 0.820 0916 0.865 Home 0.905 0.978 0.940
= Car 0921 0.716 0.806 Car 0973 0.889 0.929
; Store 0.821 0.873 0.846 Store 0.938 0.968 0.953
Train 0.882 0.833 0.857 Train 0929 0.963 0.945
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111. Our Approach vs MLSTM

Our approach (RF+RF) MLSTM-FCN

Class Precision Recall F Score Class Precision Recall F Score

Street 0.836 0.889 0.862 Street 0.93 0.89 0.91

8 Bus 0.986 0.920 0.952 Bus 0.93 0.99 0.95

8_ Office 0.917 0.840 0.876 Office 0.78 0.74 0.76

g Restaurant 0.968 0.870 0.916 Restaurant 0.81 0.62 0.70
g Home 0.872 0.949 ﬂ Home 0.84 0.90 i

_E Car 0.932 0840 0.883 Car 0.95 0.95 0.95

; Store 0922 0.937 0.929 Store 0.95 1.00 0.98

Train 0.946 0.981 0.964 Train 0.96 0.96 0.96

Class Precision Recall F Score Class Precision Recall F Score

Street 0.964 0.857 Street 086  0.90 0.88

8 Bus 0.947 0.960 Bus 0.95 0.93 0.93

8_ Office 0960 00916 Office 082 069 0.75

N Restaurant 0.984 0.884 Restaurant 080 062 0.70

é Home 0.905 0978 Home 081 088 0.84

; Car 0973 0.889 Car 089 093 0.91

Store 0938 0.968 Store 094 098 0.96

Train 0.929 0.963 Train 0.92 1.00 0.96
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Grouping Step

O The classifier can strongly discriminate between the types indoor and outdoor
but it may fail in classifying the micro-environments.

© We proposed a new step: classify data into indoor and outdoor, and then
discriminate between the micro-environments.

Meta-Learner
For
Indoor activities

Time Series First Level D’ Dataset Grouping
Data Learners SEESE (Indoor/Outdoo)

Meta-Learner
For
Outdoor activities
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Grouping Step Results (KNN+RF)

© This approach performed a higher accuracy on resampled data .

Resampled data without speed

Class Precision Recall F Score

Streer 0.74 0.82 0.78
Bus 0.93 0.89 0.91

Office 0.86 0.76 0.81
Restaurant 0.87 0.72 0.79
Home 0.85 0.93 0.89

Car 0.97 0.87 0.92

Store 0.93 0.95 0.94

Train 0.86 0.92 0.89

Mohammad Abboud et al.

Resampled data with speed

Class Precision Recall F Score

Streer 0.89 0.90

Bus 0.92 0.92

Office 0.86 0.79
Restaurant 0.89 0.76
Home 0.87 0.93

Car 0.97 0.90

Store 0.96 0.98
Train 0.89 0.98

0.89
0.92
0.82
0.82
0.90
0.93
0.97
0.93
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Grouping Step Results (RF+RF)

© This approach performed a higher accuracy on resampled data .

Resampled data without speed Resampled data with speed
Class Precision Recall F Score Class Precision Recall F Score
Street 084 o087 loss Street 096 090 |093
Bus 088 089 |o088 Bus 092 057 |04
Office 094 092 |093 CEE e
Restaurant 100 088 |093 Restaurant 100 084 1091

L]

Home 094 098 |096 ~IITE Lell s )l
Car 098 090 |094 Car 098 098 1098
Store 098 098 Store 098 095 |09
Train 087  0.94 Train 096 096 |096
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Our Approach vs MLSTM

Grouping Step (RF+RF) MLSTM-FCN
Class Precision Recall F Score Class Precision Recall F Score
Street 0.96 0.90 0.93 Street 0.86 0.90 0.88
Bus 0.92 0.97 0.94 Bus 0.95 0.93 0.93
Office 0.96 0.90 0.93 Office 0.82 0.69 0.75
Restaurant 1.00 0.84 0.91 Restaurant 0.80 0.62 0.70
Home 0.90 0.98 0.94 Home 0.81 0.88 0.84
Car 0.98 0.98 0.98 Car 0.89 0.93 0.91
Store 0.98 0.95 0.96 Store 0.94 0.98 0.96
Train 0.96 0.96 0.96 Train 0.92 1.00 0.96
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Conclusion

@ \We show that the ambient air can characterize the micro-
environment.

© By using the mobility feature, the accuracy improves slightly
though the gain is moderate.

© We have compared the results with kNN-DTW and MLSTM-
FCN classifiers which were considered as the baseline.
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O Use various algorithms for the first level learner and the meta
learner, as multi-view learning is flexible.

© Explore the application of semi-supervised learning to cope
with the lack of labels for some classes.

© Improve the performance of the learned classes by integrating
some a priori rules (e.g. the unlikelihood of being in some
microenvironment at some time of day).
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Thank you for your
attention!
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