A Denoising Hybrid Model for Anomaly
Detection in Trajectory Sequences

Maria Liatsikou, Symeon Papadopoulos, Lazaros Apostolidis and loannis Kompatsiaris

Maria Liatsikou
maria_liatsikou@iti.gr

BIG MOBILITY DATAANALYTICS (BMDA 2021)

= —
enavek ooz = EZMA

énxernmanorma  =m 2014-2020
KAINOTOMIA

Me tn ouyxpnpatodaotnon tng EAAadag kot tng Eupwmnaikng Evwong



Introduction

Anomaly detection in trajectory data

What is trajectory?
Ti={(x1,y1), (X2,¥2),----, (Xm,Ym)}



Introduction

Anomaly detection in trajectory data

What is trajectory?
Ti={(x1,¥1), (X2,Y2)s---+» (Xm;Ym)}

What is an anomalous trajectory?

One that is different compared to others with respect to
some kind of similarity

> not uniformly defined
» context dependent

[Meng et al., 2019]



Introduction

Anomaly detection in trajectory data

What is trajectory? Applications:

Ti={(X1,Y1), (X2,Y2), -y (Xm,Ym)} > traffic monitoring and management
> public safety

What is an anomalous trajectory? > sl

One that is different compared to others with respect to
some kind of similarity

> not uniformly defined
» context dependent



Related Work

Most trajectory anomaly detection methods rely on
[Gupta et al., 2013; Bhowmick & Narvekar, 2018] :

» Distance (trajectories with not many neighbors)
[Lee at al., 2008]
> Density (trajectories with low density)
[Fontes at al., 2013]
> Historical similarity (temporal outlier detection)
[Li at al., 2009]
» Classification (machine learning classification models — e.g.
Isolation Forest, Neural Autoencoders)
[Zhang et al., 2011; Bouritsas et al., 2019]



Problem Definition

Given a set of trajectories T, = {(x1,y1), (X2,¥2),--+--s Xmn,Ym)}:
Our goal:
The unsupervised spatiotemporal detection of anomalies in the dataset

» without explicit description of nhormal patterns
» capturing the temporal dependencies of trajectory data
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Given a set of trajectories T, = {(x1,y1), (X2,¥2),--+--s Xmn,Ym)}:
Our goal:
The unsupervised spatiotemporal detection of anomalies in the dataset

» without explicit description of nhormal patterns
» capturing the temporal dependencies of trajectory data

Our contributions:
» A hybrid architecture: a sequential denoising autoencoder with a density-based model
» two variants of LSTM autoencoders trained by minimizing a Haversine distance-based

weighted loss function
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Denoising LSTM Autoencoders
» Aim: reproduce the input sequence by minimizing the reconstruction error

» Anomalies: instances with high reconstruction error
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Models

Denoising LSTM Autoencoders
» Aim: reproduce the input sequence by minimizing the reconstruction error

» Anomalies: instances with high reconstruction error

Two components:
» encoder—sequence compression into a latent vector
» decoder—input reconstruction from the latent representation

Two variants of denoising LSTM Autoencoders:
» LSTM: Encoder - Encoder’s output > Copy m times - LSTM decoder - Dense layer 2

Final output
» SEQ: Encoder - Hidden state vector updated at every timestep - LSTM decoder - Dense

layer = Final output



Methodology

Loss function
1 . . .
Luvg = MZ Z[(aa(t) — xir(©)2 + (yi(6) — yir(t))?] = w,

w;: log haversine distance covered by trajectory
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» AVG: Trajectories ranked by the average of their reconstruction errors
» LOF: We propose applying Local Outlier Factor algorithm on error sequences



Methodology

Loss function
1 . . .
Lava = MZ Z[(aa(t) — xir ()2 + (y:(t) — yir(0)2] * w,

w;: log haversine distance covered by trajectory

Anomaly detection
Apply two methods on the reconstruction errors of unseen trajectories:

» AVG: Trajectories ranked by the average of their reconstruction errors
» LOF: We propose applying Local Outlier Factor algorithm on error sequences

How does LOF work?
» Density-based outlier detection
» Anomalies have much lower local densities than the average of their k nearest neighbors
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442 taxis; 01/07/2013 - 30/06/2014 (1.7M trips)
Finally, 1.2M sequences of 9 pairs of (longitude, latitude)
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Experiments

Dataset

Porto Taxi Dataset [Mendes-Moreira & Moreira-Matias, 2015]

442 taxis; 01/07/2013 - 30/06/2014 (1.7M trips)

Finally, 1.2M sequences of 9 pairs of (longitude, latitude)

Test set
> 10% of dataset

> 1% of test set altered to generate synthetic anomalies

Method Variant Description Pattern
DSTRT, Complete noise [0,8,1,7,2,6,3,5,4]
DU DSTRT, Light noise 0.1243567.8]
CYCLE. Same route twice [0,1,2,3,0,1,2,3,4]
Sielt= CYCLE, Back and forth 34543454 3]
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Model Comparison

Models
> LSTM,, & SEQ,, (MSE loss)

> LSTM, & SEQ} (weighted MSE loss)
> Baselines: Naive Random Ranking (NRR); LOF; Feed-Forward Autoencoder (FF)



Experiments

Model Comparison

Models
> LSTM,, & SEQ,, (MSE loss)

> LSTM, & SEQ} (weighted MSE loss)
> Baselines: Naive Random Ranking (NRR); LOF; Feed-Forward Autoencoder (FF)

Evaluation

» Rank-based

» Trajectories ranked by anomaly factor
o Autoencoders: rank reconstruction errors (MSE) using AVG or LOF method
o LOF: rank LOF scores of trajectories

> Atrtificially generated outliers should be ranked higher

» F1 measure at k=5%




Results

Trajectory Reconstruction

Models FF LSTM,, SEQ, LSTM,, SEQ,

MSE 8.726*10¢ 4.112*10% 4.968*106 3.908*10-¢ 4.286%10-°

» Sequential models have better reconstruction ability than FF
» Haversine-weighted loss function decreases error



Results

Anomaly Detection

DSTRT CYCLE
DSTRT. DSTRT, CYCLE, CYCLEy

S AVG LOF AVG LOF AVG LOF AVG LOF
o NRR 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67
§ LOF - 28.72 - 4.49 - 7.39 - 7.39
O FF 1830 2738 | 290 5.88 1.56  5.96 2.87 15.48
E LSTMn 27.88 30.37( 5.03 859 | 6.13 7.36 8.18  9.55
- SEQm 25.14 30.20 | 4.13 8.23 | 413 8.70 5.25 10.89

LSTMy, 28.18 30.64 (| 5.17 /.88 | 6.67 7.60 8.54 9.77

SEQh 26.70 31.30| 465 843 | 555 851 6.26 9.25

» Sequential models outperform FF & LOF in most cases
» The Hybrid architecture (LOF applied on reconstruction errors) improves performance

in all autoencoders

» Haversine-weighted function outperforms MSE in 13 of 16 cases



Results

Anomaly Detection

Variation of F1 measure over k (for LSTM & SEQ models)
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» The Hybrid architecture HVR+LOF gives better results in most cases than MSE+AVG approach
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Results

Qualitative Analysis

» SEQ., + AVG compared to SEQy, + LOF on our real test set
» One set of the top 0.1% of the trajectories wrt reconstruction error for each model
» Two annotators annotated the trajectories predicted by only one model



Results

Qualitative Analysis

» SEQ., + AVG compared to SEQy, + LOF on our real test set
» One set of the top 0.1% of the trajectories wrt reconstruction error for each model
» Two annotators annotated the trajectories predicted by only one model

Models Accuracy

SEQ,, + AVG 9.5%

SEQ; + LOF 51.7%




Results

Qualitative Analysis

\

Anomalies detected only by SEQ,, + AVG method



Results

Qualitative Analysis

Anomalies detected only by SEQ;, + LOF method

» Our Hybrid approach captures different patterns of anomalies



Conclusion

Summary

» Hybrid approach: Sequential denoising autoencoder + density-based algorithm
» Haversine-weighted loss function
» Rank-based evaluation



Conclusion

Summary

» Ensemble approach: Sequential denoising autoencoder + density-based algorithm
» Haversine-weighted loss function
» Rank-based evaluation

Future Work

» More datasets (e.g. bike sharing data)
» Annotated real data
» Transfer learning across different datasets
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