

Bias in data-driven AI systems

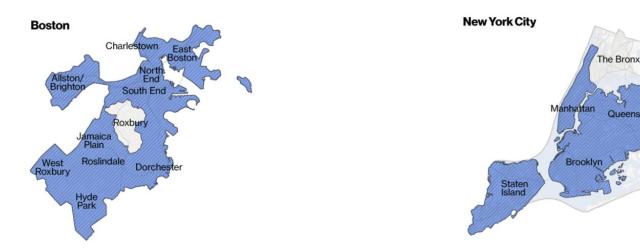
Eirini Ntoutsi

Free University Berlin

Data Science Lecture Series@University of Pireaus (online), 10.05.2021

Reality check: Can algorithms discriminate?

- Bloomberg analysts compared Amazon same-day delivery areas with U.S. Census Bureau data
- They found that in 6 major same-day delivery cities, the service area excludes predominantly black ZIP codes to varying degrees.



Source: https://www.bloomberg.com/graphics/2016-amazon-same-day/

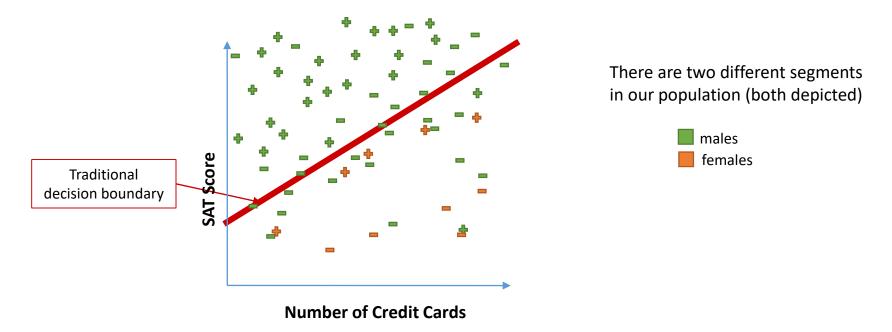
- Shouldn't this service be based on customer's spend rather than race?
 - Amazon claimed that race was not used in their models.

Reality check cont': Can algorithms discriminate?

- There have been already plenty of cases of algorithmic discrimination
 - State of the art visions systems (used e.g. in autonomous driving) recognize better white males than black women (*racial and gender bias*)
 - Google's AdFishe was found to serve significantly fewe han men (*gender-bias*) ests Algorithmic discrimination is a reality! Cendants (and lower for VERNON PRAN **COMPAS tool** (US crime predicted h white defendants **Two Petty Theft Arrests** 2 armed robberies, 1 4 iuvenile attempted armed misdemeanors robberv Subsequent Offenses Subsequent Offenses None 1 grand theft **BRISHA BORDEN** 8 8 HIGH RISK LOW RISK **HIGH RISK** Borden was rated high risk for future crime after she and a friend Borden was rated high risk for future crime after she and a friend took a kid's bike and scooter that were sitting outside. She did not took a kid's bike and scooter that were sitting outside. She did not reoffend reoffend.

The myth of algorithmic objectivity and the need for fairnessaware machine learning

 Consider the following binary classification problem with classes: {+,-}. Consider also a binary protected attribute like gender {males, females}



- The goal of a traditional classifier (simple perceptron in this case) is to find the hypothesis (parameters of the line) that minimizes the empirical error.
 - This might incur discrimination (all female instances are rejected in our example)

The fairness-aware machine learning domain

- A young, fast evolving, multi-disciplinary research field
 - Bias/fairness/discrimination/... have been studied for long in philosophy, social sciences, law, ...
- Don't blame (only) the Al
 - "Bias is as old as human civilization" and "it is human nature for members of the dominant majority to be oblivious to the experiences of other groups"
 - Human bias: a prejudice in favour of or against one thing, person, or group compared with another usually in a way that's considered to be unfair.
 - Bias triggers (protected attributes): ethnicity, race, age, gender, religion, sexual orientation ...
 - Algorithmic bias: the inclination or prejudice of a decision made by an AI system which is for or against one person or group, especially in a way considered to be unfair.

Dealing with bias in data-driven AI systems

NDERSTANDING BIAS						LE	GAL ISSUES	
Data generation Data collection Data collection		epresentativeness •Causal reasoning •Predicted prot			 Predicted & actual outcome Predicted probabilities & actual outcome 		Regulations provisions • Data accuracy (GDPR) • Equality, prohibition of discrimination (CFR-EU)	
IITIGATING BIAS								
Pre-processing In-processing		ocessing	Post-processing		A	re data modifications legal		
 Instance class modification Instance selection 			Confidence/probability score corrections Dramating (domating boundary decisions)			Intellectual Property issues		
Instance selection Instance weighting Instance weighting Instance weighting			 Promoting/demoting boundary decisions Wrapping a fair classifier on top of a black-box baselearner 			 Legal basis for data/model modification 		
CCOUNTING FOR BIAS								
Bias-aware data c	ollection			E	plaining AI decisions	4	Application of existing rules	
Bias elicitation: individual assessors, mathematical		•Model explanation by approximation				 Applicability to algorithmic decision-making 		
pooling, group elicitation, co		•Inherently interpretable models		erently interpretable models		 Limited scope of anti- 		
	Crowdsourcing				cal behaviour explanation		discrimination law. Indirect	

E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M.-E. Vidal, S. Ruggieri, F. Turini, S. Papadopoulos, E. Krasanakis, I. Kompatsiaris, K. Kinder-Kurlanda, C. Wagner, F. Karimi, M. Fernandez, H. Alani, B. Berendt, T. Kruegel, C. Heinze, K. Broelemann, G. Kasneci, T. Tiropanis, S. Staab"*Bias in data-driven artificial intelligence systems—An introductory survey*", WIREs Data Mining and Knowledge Discovery, 2020.

Outline

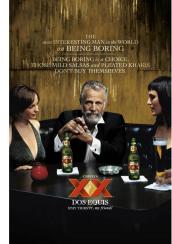
- Introduction
- Dealing with bias in data-driven AI systems
 - Understanding bias
 - Mitigating bias
 - Accounting for bias
- Case: bias-mitigation with sequential ensemble learners (boosting)
- Wrapping up

Understanding bias: Sociotechnical causes of bias

- AI-systems rely on data generated by humans (UGC) or collected via systems created by humans.
- As a result human biases
 - enter Al systems
 - e.g., bias in word-embeddings (Bolukbasi et al, 2016)
 - might be amplified by complex sociotechnical systems
 - e.g., the Web
 - new types of biases might be created

Understanding bias: How is bias manifested in data?

- Protected attributes and proxies
 - E.g., neighborhoods in U.S. cities are highly correlated with race
- Representativeness of data
 - E.g., underrepresentation of women and people of color in IT developer communities and image datasets
 - E.g., overrepresentation of black people in drug-related arrests
- Depends on data modalities



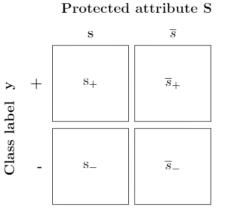
https://ellengau.medium.com/emily-inparis-asian-women-i-know-arent-likemindy-chen-6228e63da333

https://incitrio.com/top-3-lessons-learned-fromthe-top-12-marketing-campaigns-ever/

Typical (batch) fairness-aware learning setup

- Input: D = training dataset drawn from a joint distribution P(F,S,y)
 - F: set of non-protected attributes
 - S: (typically: binary, single) protected attribute
 - s (s): protected (non-protected) group
 - □ y = (typically: binary) class attribute {+,-} (+ for accepted, for rejected)

	F1	F2	S	У
User ₁	f ₁₁	f ₁₂	S	+
User ₂	<i>f</i> ₂₁			-
User ₃	f ₃₁	<i>f</i> ₂₃	S	+
User _n	<i>f</i> _{n1}			+



• Goal of fairness-aware classification: Learn a mapping from $f(F, S) \rightarrow y$

- eliminates discrimination
- → According to some fairness measure

		F1	F2	S	У	ŷ
Measuring (un)fairness: some measures	User ₁	f ₁₁	f ₁₂	S	+	-
	User ₂	<i>f</i> ₂₁			-	+
	User ₃	f ₃₁	f ₂₃	S	+	-
	User _n	<i>f</i> _{<i>n</i>1}			+	+

- Statistical parity: If subjects in both protected and unprotected groups should have equal probability of being assigned to the positive class $P(\hat{y} = +|S = s) = P(\hat{y} = +|S = \bar{s})$
- Equal opportunity: There should be no difference in model's prediction errors regarding the positive class

1

$$P(\hat{y} \neq y | S = s_+) = P(\hat{y} \neq y | S = \bar{s}_+)$$

 Disparate Mistreatment: There should be no difference in model's prediction errors between protected and non-protected groups for both classes

$$\delta FNR = P(\hat{y} \neq y | S = s_{+}) - P(\hat{y} \neq y | S = \bar{s}_{+})$$

$$\delta FPR = P(\hat{y} \neq y | S = s_{-}) - P(\hat{y} \neq y | S = \bar{s}_{-})$$

Disparate Mistreatment = $|\delta FNR| + |\delta FPR|$

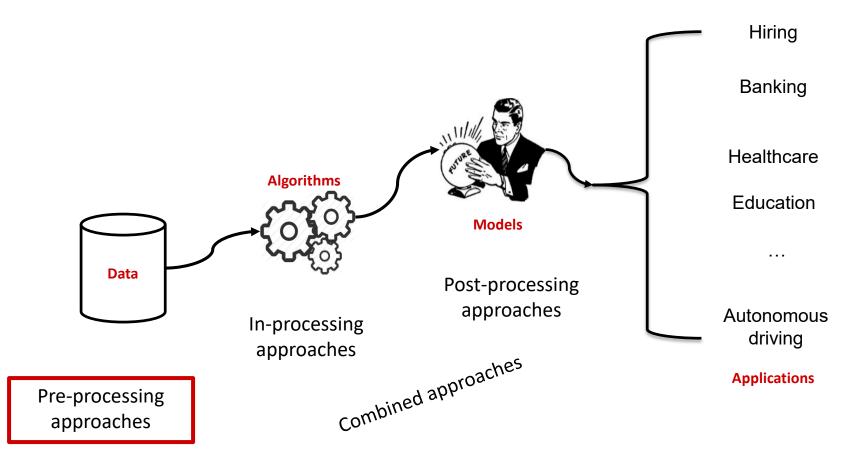
(Verma and Rubin, 2018)

Outline

- Introduction
- Dealing with bias in data-driven AI systems
 - Understanding bias
 - Mitigating bias
 - Accounting for bias
- Case: bias-mitigation with sequential ensemble learners (boosting)
- Wrapping up

Mitigating bias

Bias can arise at any stage of the data-driven AI decision making



Mitigating bias: pre-processing approaches

- Intuition: making the data more fair will result in a less unfair model
- Idea: balance the protected and non-protected groups in the dataset
- Design principle: minimal data interventions (to retain data utility for the learning task)
- Different techniques:
 - Instance class modification (massaging), (Kamiran & Calders, 2009), (Luong, Ruggieri, & Turini, 2011)
 - Instance selection (sampling), (Kamiran & Calders, 2010) (Kamiran & Calders, 2012)
 - Instance weighting, (Calders, Kamiran, & Pechenizkiy, 2009)
 - Synthetic instance generation (Iosifidis & Ntoutsi, 2018)
 - ...

Mitigating bias: pre-processing approaches: Massaging

- Change the class label of carefully selected instances (Kamiran & Calders, 2009).
 - The selection is based on a ranker which ranks the individuals by their probability to receive the favorable outcome.
 - The number of massaged instances depends on the fairness measure (group fairness)

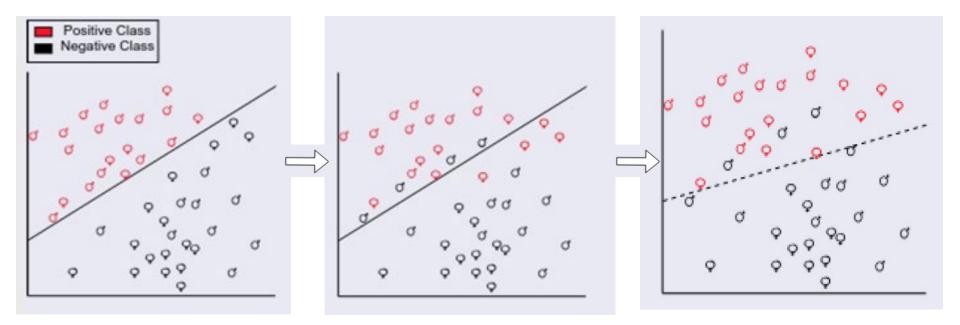
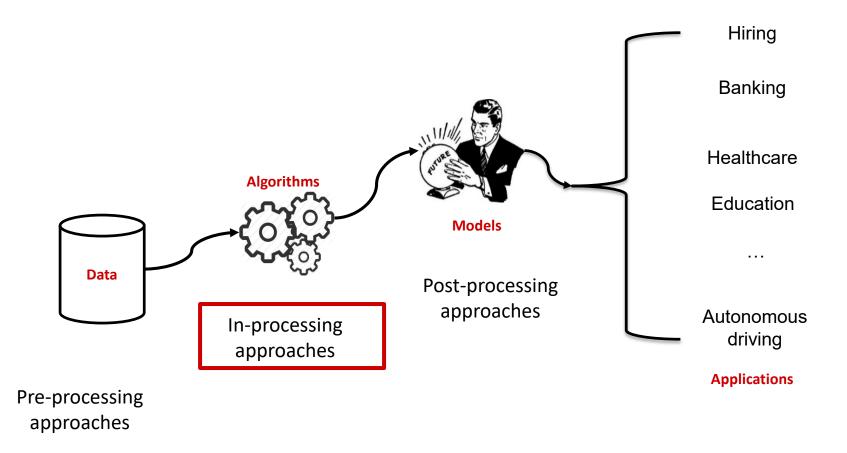


Image credit Vasileios Iosifidis

Mitigating bias

Bias can arise at any stage of the data-driven AI decision making



Mitigating bias: in-processing approaches

- Intuition: working directly with the algorithm allows for better control
- Idea: explicitly incorporate the model's discrimination behavior in the objective function
- Design principle: "balancing" predictive- and fairness-performance
- Different techniques:
 - Regularization (Kamiran, Calders & Pechenizkiy, 2010), (Kamishima, Akaho, Asoh & Sakuma, 2012), (Dwork, Hardt, Pitassi, Reingold & Zemel, 2012) (Zhang & Ntoutsi, 2019)
 - Constraints (Zafar, Valera, Gomez-Rodriguez & Gummadi, 2017)
 - Training on latent target labels (Krasanakis, Xioufis, Papadopoulos & Kompatsiaris, 2018)
 - In-training altering of data distribution (Iosifidis & Ntoutsi, 2019)

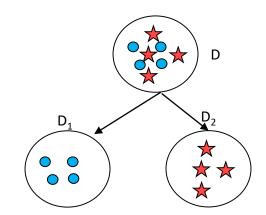
• ...

Mitigating bias: in-processing approaches: change the objective function

We introduce the fairness gain of an attribute (FG)

 $FG(D, A) = |Disc(D)| - \sum_{v \in dom(A)} \frac{|D_v|}{|D|} |Disc(D_v)|$

Disc(D) corresponds to statistical parity (group fairness)



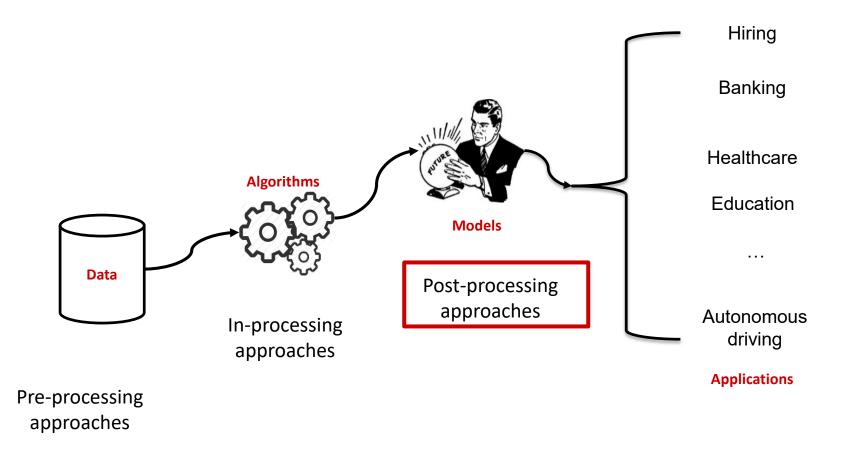
 We introduce the joint criterion, fair information gain (FIG) that evaluates the suitability of a candidate splitting attribute A in terms of both predictive performance and fairness.

$$FIG(D, A) = \begin{cases} IG(D, A) & ,ifFG(D, A) = 0\\ IG(D, A) \times FG(D, A) & ,otherwise \end{cases}$$

W. Zhang, E. Ntoutsi, "An Adaptive Fairness-aware Decision Tree Classifier", IJCAI 2019.

Mitigating bias

Bias can arise at any stage of the data-driven AI decision making



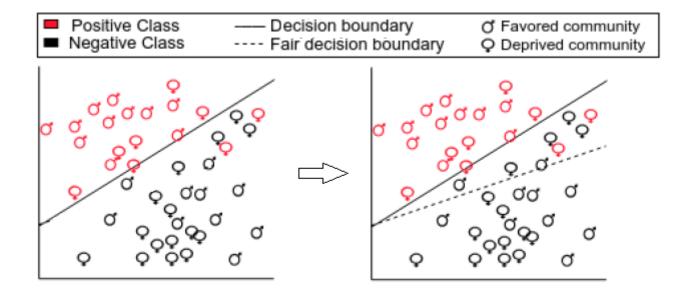
Mitigating bias: post-processing approaches

- Intuition: start with predictive performance
- Idea: first optimize the model for predictive performance and then tune for fairness
- Design principle: minimal interventions (to retain model predictive performance)
- Different techniques:
 - Correct the confidence scores (Pedreschi, Ruggieri, & Turini, 2009), (Calders & Verwer, 2010)
 - Correct the class labels (Kamiran et al., 2010)
 - Change the decision boundary (Kamiran, Mansha, Karim, & Zhang, 2018), (Hardt, Price, & Srebro, 2016)
 - Wrap a fair classifier on top of a black-box learner (Agarwal, Beygelzimer, Dudík, Langford, & Wallach, 2018)

····

Mitigating bias: post-processing approaches: shift the decision boundary

An example of decision boundary shift



V. Iosifidis, H.T. Thi Ngoc, E. Ntoutsi, "Fairness-enhancing interventions in stream classification", DEXA 2019.

Outline

- Introduction
- Dealing with bias in data-driven AI systems
 - Understanding bias
 - Mitigating bias
 - Accounting for bias
- Case: bias-mitigation with sequential ensemble learners (boosting)
- Wrapping up

Accounting for bias

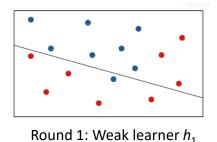
- Algorithmic accountability refers to the assignment of responsibility for how an algorithm is created and its impact on society (Kaplan et al, 2019).
- Many facets of accountability for AI-driven algorithms and different approaches
 - Proactive approaches:
 - bias-aware data collection, e.g., for Web data, crowd-sourcing
 - bias-description and modeling, e.g., via ontologies
 - Retroactive approaches:
 - Explaining AI decisions in order to understand whether decisions are biased
 - What is an explanation? Explanations w.r.t. legal/ethical grounds?
 - □ Using explanations for fairness-aware corrections (inspired by Schramowski et al, 2020)

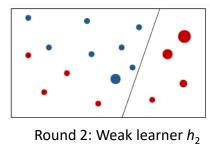
Outline

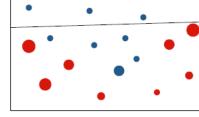
- Introduction
- Dealing with bias in data-driven AI systems
 - Understanding bias
 - Mitigating bias
 - Accounting for bias
- Case: bias-mitigation with sequential ensemble learners (boosting)
- Wrapping up

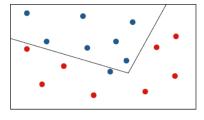
Fairness with sequential learners (boosting)

- Sequential ensemble methods generate *base learners* in a *sequence*
- The sequential generation of base learners promotes the dependence between the base learners.
 - Each learner learns from the mistakes of the previous predictor
- The *weak* learners are combined to build a *strong* learner
- Popular examples: Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost).
- Our base model is AdaBoost (Freund and Schapire, 1995), a sequential ensemble method that in each round, re-weights the training data to focus on misclassified instances.









Final strong learner H() $H(x) = \sum_{j=1}^{T} \alpha_i h_j(x)$

Intuition behind using boosting for fairness

- 1. It is easier to make "fairness-related interventions" in simpler models rather than complex ones
- 2. We can use the whole sequence of learners for the interventions instead of the current one



Limitations of related work

- Existing works evaluate predictive performance in terms of the *overall* classification error rate (ER), e.g., [Calders et al'09, Calmon et al'17, Fish et al'16, Hardt et al'16, Krasanakis et al'18, Zafar et al'17]
- In case of class-imbalance, ER is misleading
 - Most of the datasets however suffer from imbalance

	Adult Census	Bank	Compass	KDD Census
#Instances	45,175	40,004	5,278	299,285
#Attributes	14	16	9	41
Sen.Attr.	Gender	Marit. Status	Gender	Gender
Class ratio (+:–)	1:3.03	1:7.57	1:1.12	1:15.11
Positive class	>50K	subscription	recidivism	>50K

Moreover, *Dis.Mis. is* "oblivious" to the class imbalance problem

Example
• Positive class << Negative class e.g., $ s^+ + \bar{s}^+ = 5\%, s^- + \bar{s}^- = 95\%$
 Model classifies everything as negative.
• Accuracy is still high (95%) and model is "fair" i.e., $\delta FNR = 0, \delta FPR = 0$

From Adaboost to AdaFair

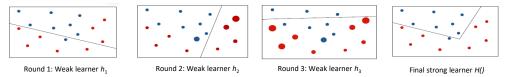
- We tailor AdaBoost to fairness
 - We introduce the notion of *cumulative fairness* that assesses the fairness of the model *up* to the current boosting round (partial ensemble).
 - We directly incorporate fairness in the *instance weighting* process (traditionally focusing on classification performance).
 - We optimize the number of weak learners in the final ensemble based on balanced error rate thus directly considering class imbalance in the best model selection.

$$BER = 1 - \frac{1}{2} \cdot \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right) = 1 - \frac{1}{2} \cdot (TPR + TNR)$$
$$ER = 1 - \frac{TP + TN}{TP + FN + TN + FP}$$

V. Iosifidis, E. Ntoutsi, "AdaFair: Cumulative Fairness Adaptive Boosting", ACM CIKM 2019.

AdaFair: Cumulative boosting fairness

- Let *j*: 1−*T* be the current boosting round, *T* is user defined
- Let $H_{1:j}(x) = \sum_{i=1}^{j} a_i h_i(x)$ be the *partial ensemble*, up to current round *j*.



The cumulative fairness of the ensemble up to round *j*, is defined based on the parity in the predictions of the partial ensemble between protected and non-protected groups for both classes

$$\begin{split} \delta FNR^{1:j} &= \frac{\sum_{i=1}^{|\bar{s}_{+}|} 1 \cdot \mathbb{I}[\sum_{k=1}^{j} a_{k} h_{k}(x_{i}^{\bar{s}_{+}}) \neq y_{i}]}{|\bar{s}_{+}|} - \frac{\sum_{i=1}^{|s_{+}|} 1 \cdot \mathbb{I}[\sum_{k=1}^{j} a_{k} h_{k}(x_{i}^{s_{+}}) \neq y_{i}]}{|s_{+}|} \\ \delta FPR^{1:j} &= \frac{\sum_{i=1}^{|\bar{s}_{-}|} 1 \cdot \mathbb{I}[\sum_{k=1}^{j} a_{k} h_{k}(x_{i}^{\bar{s}_{-}}) \neq y_{i}]}{|\bar{s}_{-}|} - \frac{\sum_{i=1}^{|s_{-}|} 1 \cdot \mathbb{I}[\sum_{k=1}^{j} a_{k} h_{k}(x_{i}^{s_{-}}) \neq y_{i}]}{|s_{-}|} \end{split}$$

 ``Forcing'' the model to consider ``historical'' fairness over all previous rounds instead of just focusing on current round h_j() results in better classifier performance and model convergence.

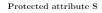
AdaFair: fairness-aware weighting of instances

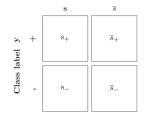
- Vanilla AdaBoost already boosts misclassified instances for the next round
- Our weighting *explicitly* targets fairness by extra boosting discriminated groups for the next round
- The data distribution at boosting round *j*+1 is updated as follows

$$w_i \leftarrow \frac{1}{Z_j} w_i \cdot e^{\alpha_j \cdot \hat{h}_j(x) \cdot \mathbb{I}(y_i \neq h_j(x_i))} \cdot (1 + u_i)$$

■ The fairness-related cost u_i of instances x_i ∈ D which belong to a group that is discriminated is defined as follows:

$$u_{i} = \begin{cases} |\delta FNR^{1:j}|, & if \mathbb{I}((y_{i} \neq h_{j}(x_{i})) \land |\delta FNR^{1:j}| > \epsilon), x_{i} \in s_{+}, \delta FNR^{1:j} > 0\\ |\delta FNR^{1:j}|, & if \mathbb{I}((y_{i} \neq h_{j}(x_{i})) \land |\delta FNR^{1:j}| > \epsilon), x_{i} \in \bar{s}_{+}, \delta FNR^{1:j} < 0\\ |\delta FPR^{1:j}|, & if \mathbb{I}((y_{i} \neq h_{j}(x_{i})) \land |\delta FPR^{1:j}| > \epsilon), x_{i} \in s_{-}, \delta FPR^{1:j} > 0\\ |\delta FPR^{1:j}|, & if \mathbb{I}((y_{i} \neq h_{j}(x_{i})) \land |\delta FPR^{1:j}| > \epsilon), x_{i} \in \bar{s}_{-}, \delta FPR^{1:j} < 0\\ 0, & otherwise \end{cases}$$





AdaFair: optimizing the number of weak learners

- Typically, the number of boosting rounds/ weak learners *T* is user-defined
- We propose to select the optimal subsequence of learners 1 ... θ , $\theta \le T$ that minimizes the balanced error rate (BER)
- In particular, we consider both ER and BER in the objective function

 $argmin_{\theta}(c * BER_{\theta} + (1 - c)ER_{\theta} + Mis.Dis.)$

 The result of this optimization if a final ensemble model with *Mis.Dis.* fairness

$$H(x) = \sum_{i=1}^{\theta} a_i h_i(x)$$

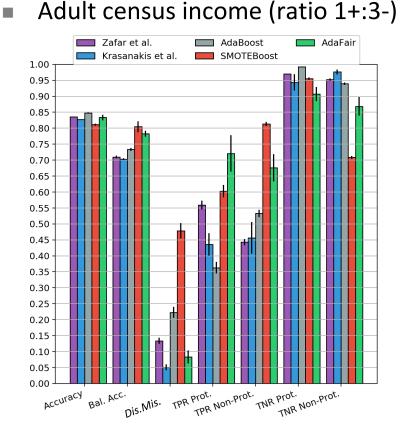
Datasets of varying imbalance

	Adult Census	Bank	Compass	KDD Census
#Instances	45,175	40,004	5,278	299,285
#Attributes	14	16	9	41
Sen.Attr.	Gender	Marit. Status	Gender	Gender
Class ratio (+:–)	1:3.03	1:7.57	1:1.12	1:15.11
Positive class	>50K	subscription	recidivism	>50K

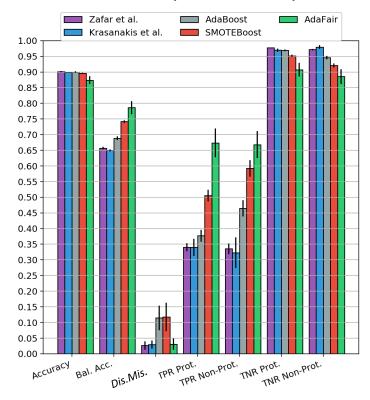
Baselines

- AdaBoost [Sch99]: vanilla AdaBoost
- SMOTEBoost [CLHB03]: AdaBoost with SMOTE for imbalanced data.
- Krasanakis et al. [KXPK18]: Boosting method which minimizes *Dis.Mis.* by approximating the underlying distribution of hidden correct labels.
- Zafar et al.[ZVGRG17]: Training logistic regression model with convex-concave constraints to minimize *Dis.Mis.*
- AdaFair NoCumul: Variation of AdaFair that computes the fairness weights based on individual weak learners.

Experiments: Predictive and fairness performance



Bank dataset (ratio 1+:8-)

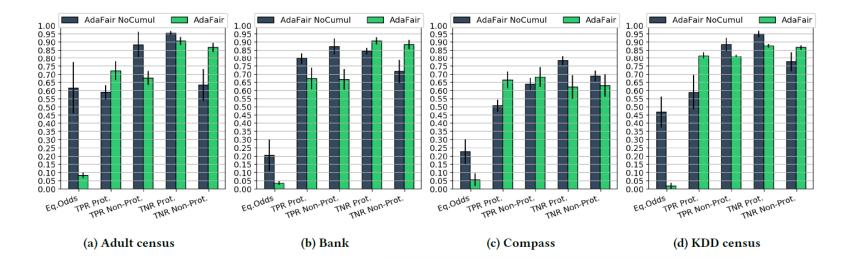


Larger values are better, for Dis.Mis. lower values are better

- Our method achieves high balanced accuracy and low discrimination (*Dis.Mis.*) while maintaining high TPRs and TNRs for both groups.
- The methods of Zafar et al and Krasanakis et al, eliminate discrimination by rejecting more positive instances (lowering TPRs).

Cumulative vs non-cumulative fairness

Cumulative vs non-cumulative fairness impact on model performance



- Cumulative notion of fairness performs better
- The cumulative model (AdaFair) is more *stable* than its non-cumulative counterpart (standard deviation is higher)

Outline

- Introduction
- Dealing with bias in data-driven AI systems
 - Understanding bias
 - Mitigating bias
 - Accounting for bias
- Case: bias-mitigation with sequential ensemble learners (boosting)
- Wrapping up

Wrapping-up, ongoing work and future directions

- In this talk I focused on the myth of algorithmic objectivity and
 - the reality of algorithmic bias and discrimination and how algorithms can pick biases existing in the input data and further reinforce them
- A large body of research already exists but
 - focuses mainly on fully-supervised batched learning with single-protected (and typically binary) attributes with binary classes
 - Moving from batch learning to online learning
 - targets bias in some step of the analysis-pipeline, but biases/errors might be propagated and even amplified (unified approached are needed)
 - Moving from isolated approaches (pre-, in- or post-) to combined approaches

T. Hu, V. Iosifidis, W. Liao, H. Zang, M. Yang, E. Ntoutsi, B. Rosenhahn, "FairNN - Conjoint Learning of Fair Representations for Fair Decisions", DS 2020.

V. Iosifidis, E. Ntoutsi, "FABBOO - Online Fairness-aware Learning under Class Imbalance", DS 2020.

Wrapping-up, ongoing work and future directions

- Moving from single-protected attribute fairness-aware learning to multifairness
 - Existing legal studies define multi-fairness as compound, intersectional and overlapping [Makkonen 2002].
- Moving from fully-supervised learning to unsupervised and reinforcement learning
- Moving from myopic (maximize short-term effect/immediate performance) solutions to non-myopic ones (that consider long-term effects) [Zhang et al,2020]
- Actionable approaches (counterfactual generation)

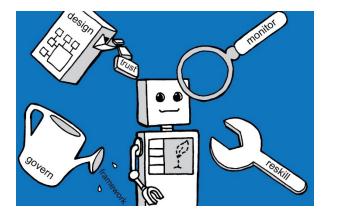
A.Roy, V. Iosifidis, E. Ntoutsi, "Multi-Fair Pareto Boosting", arXiv

 \blacksquare

P. Naumann, E. Ntoutsi, "Consequence-aware Sequential Counterfactual Generation", arXiv

Thank you for you attention!

Questions?



https://nobias-project.eu/ @NoBIAS_ITN

https://www.bias-project.org/

https://lernmint.org/

Feel free to contact me:

- eirini.ntoutsi@fu-berlin.de
- @entoutsi
- https://www.mi.fuberlin.de/en/inf/groups/ag-KIML/index.html