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Language model

* Goal: determine P(s = wj ...wy) in some domain of interest
k
P(s) = 1_[ P(w; | Wy ..Wj_yq)
i=1

e.g., P (wyw,w3) =P (wy )P (W, Iwy)P(wg | wyw,)

e Traditional n-gram language model assumption:
“the probability of a word depends only on context of n — 1 previous words”

k
5P = | [P w1 Wi e wisy)
i=1

* Typical ML-smoothing learning process (e.g., Katz 1987):

) _ #Wi_ng1 Wi Wi
i-1/ —

1. computeP (w: | w: W
P ( ' i+l #Wi_nt+1-Wi-1

on training corpus

2. smoothto avoid zero probabilities



Representing Words

> One-hot vector

high dimensionality
sparse vectors
dimensions=|V| (1076<|V|)

unable to capture semantic
similarity between words

> Distributional vector

words that occur in similar
contexts, tend to have
similar meanings

each word vector contains

the frequencies of all its

neighbors
dimensions=|V|

computational complexity for
ML algorithms
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Representing Words

» Word embeddings

— store the same contextual
information in a low-
dimensional vector

— densification (sparse to

dense)
—compression eat
 dimensionality reduction food
» dimensions=m news
100<m<500

— able to capture semantic
similarity between words

— learned vectors
(unsupervised)

— Learning methods



Example

» We should assign similar probabilities (discover similarity) to Obama
Speaks to the media in lllinois and the President addresses the press
in Chicago

 This does not happen because of the “one-hot” vector space
representation

Onehot Word embeddings
b =[0000 ..0100] T - i
© 'ama ! ] - obama. president = 0 w; EV mapping © »R™
president=[0001 ... 000 0] |
speaks = [0 010 ..000 0] ] . wy obama Wy feature, featurep,
ddr 0000 0010] - speaks.addresses = 0 1l l ! ! !
CSSES = .
2 - obama=[0.....1....0] obama=[0.12..— 0.25]

_— & >
< >

llinois =[1000 .. 0000] | —__ _ . ) ;
- 1111Nn0l1sS. chicago =
chicago=[0100 ...0000] 8 o | X

T T

“one-hot” vector u feature vector




SVD word embeddings

Dimensionalityreduction on co-occurrence matrix

Createa |V|x|V| word co-occurrence matrix X

ApplySVD X = USVT

Take first k columns of U

Use the k-dimensional vectors as representationsfor each word
Able to capture semanticand syntacticsimilarity



SVD application - Latent Structure in documents

eDocuments are represented based on the Vector Space Model

e\/ector space model consists of the keywords contained in a document.

eIn many cases baseline keyword based performs poorly — not able to detect
synonyms.

eTherefore document clustering is problematic

eExample where of keyword matching with the query: “IDF in computer-
based information look-up”

access document  retrieval information  theory database  indexing computer
Docl X X X X X
Doc2 X X X
Doc3 X X X

Indexing by Latent Semantic Analysis (1990) Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman, Journal of the
American Society of Information Science



Latent Semantic Indexing (LSI) -
e Finding similarity with exact keyword matching is
problematic.
e Using SVD we process the initial document-term document.

e Then we choose the k larger singular values. The resulting
matrix is of order k and is the most similar to the original one

based on the Frobenius norm than any other k-order matrix.



Latent Semantic Indexing (LSI) - I

e The initial matrix is SVD decomposed as: A=ULVT

e Choosing the top-k singular values from L we have:
A=U LV,
e L, square kxk - top-k singular values of the diagonal in matrix L,

e U, mxk matrix - first k columns in U (left singular vectors)

e V. kxn matrix - first k lines of VT (right singular vectors)

Typical values for k~200-300 (empirically chosen based on experiments
appearing in the bibliography)



LS| capabilities

- Term to term similarity: A /A, ™=U, L, 2U,T
Where Ak=UkLkVt

- Document-document similarity: A,"A =V, L2V, T

- Term document similarity (as an element of the
transformed — document matrix)

- Extended query capabilities transforming initial query g
tod, d=aTUL ™

- Thus q,can be regarded a line in matrix V,



LS| — an example

LSI application on a term — document matrix

Cl1:
C2:
C3:
C4:
C5:
M1:
M2:
M3:
M4

Human machine Interface for Lab ABC computer application

A survey of user opinion of computer system response time
The EPS user interface management system

System and human system engineering testing of EPS

Relation of user-perceived response time to error measurements
The generation of random, binary unordered trees

The intersection graph of path in trees

Graph minors IV: Widths of trees and well-quasi-ordering

Graph minors: A survey

e The dataset consists of 2 classes, 1st: “"human — computer interaction”

(c1-c5) 2nd: related to graph (m1-m4). After feature extraction the titles
are represented as follows.

Indexing by Latent Semantic Analysis (1990) Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman, Journal of the
American Society of Information Science



LS| — an example

M4

M3

M2

M1
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LS| — an example

A=ULVT




LS| — an example

A=ULVT
0.22 -0.11 1 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41 0 0 0
0.20 -0.07 | 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11 0 0 0
0.24 0.04 | -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49 0 0 0
0.40 0.06 |-0.34 0.10 0.33 0.38 0.00 0.00 0.01 0 0 0
0.64 -0.17 | 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27 0 0 0
0.27 0.1 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 0 0 0
0.27 0.1 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 0 0 0
0.30 -0.14 | 0.33 0.19 0.1 0.27 0.03 -0.02 -0.17 0 0 0
0.21 0.27 |-0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58 0 0 0
0.01 0.49 |0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 0 0 0
0.04 0.62 | 0.22 0.00 -0.07 0.1 0.16 -0.68 0.23 0 0 0
0.03 0.45 | 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18 0 0 0




LS| — an example

A=ULVT

0.36

0.56

0.85

1.31

1.50

1.64

2.35

2.54




LS| — an example

A=ULVT

0.20 |-0.06 |0.11 -0.95 |0.05 -0.08 |0.18 -0.01 |-0.06
0.61 0.17 |-0.50 |[-0.03 |-0.21 -0.26 |-043 |[0.05 0.24
046 |-0.13 |0.21 0.04 0.38 0.72 -0.24 | 0.01 0.02

V= 0.54 |-0.23 | 0.57 0.27 -0.21 -0.37 |0.26 -0.02 |-0.08
0.28 011 |-0.51 |[0.15 0.33 0.03 0.67 -0.06 |-0.26
0.00 0.19 |0.10 0.02 0.39 -0.30 |-0.34 (045 -0.62
0.01 044 |0.19 0.02 0.35 -021 |-015 |[-0.76 |0.02
0.02 0.62 |0.25 0.01 0.15 0.00 0.25 0.45 0.52
0.08 0.53 |0.08 -0.03 |-0.60 |0.36 0.04 -0.07 |-0.45




LS| — an example

Choosing the 2 largest singular values we have

0.22 -0.11
0.20 -0.07
0.24 0.04
0.40 0.06
0.64 -0.17
0.27 0.11

0.27 0.11

0.30 -0.14
0.21 0.27
0.01 0.49
0.04 0.62
0.03 0.45

V

T—
K =

3.34 0
L= 0 254
020 |06 |046 |054 | 028 |0.00 |0.02 |0.02 |0.08
1
; 01 |-013]-023 011 |0.19 |044 |062 |053
0.06 |7




LS| (2 singular values)

C1 |C2 |C3 C4 CS5 M1 M2 M3 M4
human 0.16 (040 (038 |047 |018 |-005 |-0.12 |-0.16 |-0.09
Interface | 0.14 |(0.37 (033 |040 |0.16 |[-0.03 |-0.07 |-0.10 |-0.04
Computer [ 0.15 [ 0.51 [0.36 |0.41 024 |002 (006 |0.09 (012
User 0.26 [0.84 |0.61 0./0 |039 |[003 |008 (012 |0.19
System 045 (123 [1.05 127 (056 |-0.07 [-0.15 |-0.21 |[-0.05
Response | 0.16 | 0.58 |0.38 |0.42 028 |006 (013 |0.19 |[0.22
Time 0.16 [0.58 [0.38 |0.42 028 |006 (013 |0.19 |[0.22
EPS 022 [0.55 |0.51 063 |024 |-0.07 |-014 |-0.20 |-0.11
Survey 0.10 |0.53 [0.23 |[0.21 0.27 |014 |0.31 044 |042
Trees -0.06 {0.23 |-0.14 |-0.27 |014 |024 |055 |[0.77 |0.66
Graph -0.06 {0.34 |-0.15 |-0.30 |[0.20 |O0.31 069 098 |[0.85
Minors -0.04 {025 |-0.10 |-0.21 |015 |022 |050 [0.71 0.62




LS| Example

e Query: “human computer interaction” retrieves

documents: c,,C,, ¢4 but not c; and cs.

e If we submit the same query (based on the
transformation shown before) to the transformed matrix
we retrieve (using cosine similarity) all c;-cs even if ¢
and cs have no common keyword to the query.

e According to the transformation for the queries we
have:



Query transformation

query

human

Interface

computer

User

System

Response

Time

EPS

Survey

Trees

Graph

OO 0O 00|00 0O|IO|~|O |-
O|lOo0oO|0O|l0O|l0O|O0O|O|O|OC|=—~|O| -

Minors




Query transformation

1 0 0 0 0 0 0 0 0 0
0.22 -0.11
0.20 -0.07
0.24 0.04
0.40 0.06 0334 |0
0.64 |-0.17 Lk= 0 0 254
0.27 0.1
0.27 0.1
0.30 -0.14
0.21 0.27
vy e qn=qTUkLk — |0.138 0.0273
0.04 0.62
0.03 0.45




Map
docs to
the 2
dim
space
VkLk=

Onlk =

Query transformation

0.20 | -0.06 0.67 -0.15

0.61 |0.17 2.04 0.43

0.46 |-0.13 1.54 -0.33

0.54 |-0.23 1.80 -0.58

0.28 | 0.11 0.94 0.28
334 |0

0.00 |0.19 = 10.00 0.48
0 2.54

0.01 |0.44 0.03 1.12

0.02 |0.62 0.07 1.57

0.08 | 0.53 0.27 1.35

- 334 |0
0.138 0.0273 = 1046 |-0.069
0 2.54




Query transformation

e The cosine similarity matrix of query vector to the documents is:

s I3
m4
m2
o
query
c1 |o0.99 05 1 c2
C2 004 orill = 5 2 >
C1
c3 |0.99 ca
ca |0.99 054 ca
c5 |0.90
M1 |-0.14
M2 |-0.13
M3 |-0.11
M4 |0.05




SVD problems

The dimensions of the matrix change when dictionary
changes

The whole decomposition must be re-calculated when we
add a word

Sensitive to the imbalance in word frequency

Very high dimensional matrix

Not suitable for millionsof words and documents

Quadratic cost to perform SVD

Solution: Directly calculate a low-dimensional representation



Word analogy

» Words with similar meaning end up
laying close to each other
» Words that share similar contexts
may be analogous
— Synonyms
— Antonyms
—Names
— Colors
— Places
— Interchangeable words

 Vector arithmetics to work with
analogies
* i.e. king - man + woman = queen

queen

woman

0.4

0.3+

0.2

01

0.0+

0.1 -

0.2

0.3

0.4

0.5 -

-brother

-sister

he

0.1

0.0

0.1

0.2

03

0.4



But why?

« what’s an analogy?
p(w'lman)  p(w'|king)
p(w’|lwoman) ~ p(w'|queen)
Assume PMI is approximated by a low rank approximation of the co-occurrence
matrix.
1. PMI(w',w) = v,v,, *inner product*
2. lIsotropic: E /[(v,, v,)]*= ||v,]]?

Then
W' w) . _p(w'jman)
p(W'|queen) p(W'|lwoman)

3. argmin,, E ,[In

]2

4. argmin,, E [(PMI(w'|w) — PMI(w'|queen)) — (PMI(w'|man) — PMI(w'|woman))]?

5. argminw| |(vw_vqueen) - (vman _ vwoman)l |2
6. Vy = Vgyeen — Ywoman T Vman WhiCh is an analogy!

* Arora et al (ACL 2016) shows that if (2) holds then (1) holds as well
« So we need to construct vectors from co-occurrence that satisfy (2)
« d<<|V| in order to have isotropic vectors

A Latent Variable Model Approach to PMI-based Word Embeddings, Arora et al (ACL 2016)
26



Learning Word Vectors

» Corpus containing a sequence of T training words

> Objective: f(w,, ..., Wy_,, 1) =

p\(wt |Wt e Wi 1) i-th output = P(w, = i | context)

» Decom posed intwo parts: softmax
Ceee X0 (X X0
4 Vd ~
mapping C m ’ ’ ion b N
Wi } ]R ,/ I/ most|computation here \\
eV /I " \\
] I .
» Mapping C (1-hotv => lower dimensions) tanh !

» Mapping any g s.t. (estimate prob t+1| t
previous)

f(We_q, = Wen41) =8(CWe—1) - ,C(Wep 41)) Clwi—2)  C(wi-1) -
* (C(i) isthe i-th word feature vector
(Word embedding)

~._ Matrix C

..........................................
shared parameters
across words

.

index for w;_, 1+ index for w;_; index for w,_,

» Objective function: ] = %Z f(wg, oo, We_41)

Bengio. Yoshua. et al. "A neural probabilistic language model.”
The Journal of Machine Learning Research 3 (2003): 1137-1155.

27



Neural Net Language Model

For each training sequence: input = (context, target) pair: (Wi_p41 - Wi_1, Wt)
objective: minimize E = —log P(W IWi_p41 o Wi_1)

SOftmaX. lth OUtpUt = p (Wl - Wt | Wt—n+1 "'Wt—l)

OUTPUT [V| probabilities

LAYER O O that sum to 1
\ tanh >< /

HIDDEN O e 500< h< 1000
LAYER O (typically)
nonlinear

concatenation ><
PROJECTION —1).
LAYER O O O O O O jm=1-m
linear . : . ' . o . '

C(Wy—n+1) C(Wi—z) C(Weo1)

0000 _ 0000.....1000 |(n—1)-[V]|
0 {)

input context: Wi-n+1 Wiy Wi_q
(n — 1) past words 11

INPUT LAYER I_ 0000......0010




Objective function

E=—logP(W¢ IWi_ptq .. Wi—1)

a probability between Oand 1.

On this support, thelogis negative =>—-log term positive.

makes sense to try to minimize it.

Probability of word given the context be as high as possible (1 for a
perfect prediction).

case the erroris equal to O (global minimum).

p log(p) -log(p)
0,7 -0,15490196 0,15490196

0,2 -0,698970004 | 0,698970004




NNLM Projection layer

> Performs a simple table lookup in Cy| ,: concatenate the rows of the shared mapping matrix
Cjv,m corresponding to the context words

Example for a two-word context w,_,w;_;:

VI m
1 : - i
Wi @oooo ...... 0010 | Lifa)
1 :
then ‘/CP C(Wey)
: WY
We-1  0001......0000 (2? -
v C(wi_q)
L . 1
C(wyy|)
C|V|.m
Concatenate@ and @ - C(We_y) C(W_q)

> Cm Is critical: it contains the weights that are tuned at each step. After training,
it contains what we’re interested in: the word vectors



NNLM hidden/output layers and training

> Softmax (log-linear classification model) is used to output positive numbers that sum to one (a
multinomial probability distribution):
Ywy
for the it unit in the output layer: P(w; = wy | Wi_piq o We_q) = ZIVIe—YW/
=1 e i
Where:
-y=b+U.tanh(d + H.x)
- tanh : nonlinear squashing (link) function
- x : concatenation C(w) of the context weight vectors seen previously
- b : output layer biases (|V| elements)
- d : hidden layer biases (h elements). Typically 500 < h < 1000

- U : [V] * h matrix storing the hidden-to-output weights e T
-H: (h * (n — 1)m) matrix storing the projection-to-hidden weights o
~ 6= (bd UH,C) AL
] L. szﬁltéZON |O O- O O O - O ‘ n—1)-m
- Complexity per training sequence:n *m +n*m*h +h « [V — o o
computational bottleneck: nonlinear hidden layer (h = |V| term) / DR >
INPUT LAYER L 0000....0010 ___ 0010....0000 __ 0000......1000 J (n—=1)-v|

t 1

put c text Wip Wi

» Training is performed via stochastic gradient descent (learning rate €): “ - ot i

oE 0logP (W¢ | We_pyq o We_1)

O<0+¢- %—6+ 30

(weights are initialized randomly, then updated via backpropagation)




NNLM facts

tested on Brown (1.2M words, |V| = 16K) and AP News (14M words, |V| = 150K reduced to
18K) corpuses

Brown:h =100, n=5,m = 30
AP News:h = 60, n = 6, m = 100, 3 week training using 40 cores

24% and 8% relative improvement (resp.) over traditional smoothed n-gram LMs
in terms of test set perplexity: geometric average of 1/P(w, | W_,q ... W_{)

Due to complexity, NNLM can’t be applied to large data sets — poor performance on rare
words

Bengio et al. (2003) initially thought their main contribution was a more accurate LM. They
let the interpretation and use of the word vectors as future work

On the opposite, Mikolov et al. (2013) focus on the word vectors



Word2Vec

» Mikolov et al. in 2013

» Key idea of word2vec: achieve better performance not by using a more
complex model (i.e., with more layers), but by allowing a simpler
(shallower) model to be trained on much larger amounts of data

» no hidden layer (leads to 1000X speedup)

» projection layer is shared (not just the weight matrix) - C

» context: words from both history & future:

* Two algorithms for learning words vectors:

-  CBOW: from context predict target

- Skip-gram: from target predict context



Continuous Bag-of-Words (CBOW)

» continuous bag-of-words

» continuous representations whose
orderisof noimportance

» usesthe surrounding words to predict
the center word

» n-words beforeand after the target
word

Input layer

[eXeXe]

[O

Output layer

[ eXeXe]|

=
N
e
[6)

[

[eXeXe)

S

CxV-dim

Efficient Estimation of Word Representations in Vector
Space- Mikolov etal. 2013

34



Continuous Bag-of-Words (CBOW)

For each training sequence: input = (context, target) pair: (wt_g e Wi Wigq ...wt%,wt)

objective: minimize —logP(W¢ 1Wi_p4q1 o We_1)

hierarchical softmax. t™output =P (W; = Wy | We_pyq o We_q)
OUTPUT O e O |V| probabilities
LAYER ‘ that sum to 1
< 2
averaging
PROJECTION O . O | 100 < m< 1000
LAYER .
i typically
linear
L@
n
table lookup in shared Cjy|
INPUT LAYER ﬁ:l_ 10001000000......100100000010 J V|
0000.. ** 0000.. , 0000.. ** 0000.. ' n = 8 typically
.0010 ' .0010 .0010 ' .0010

input context: n/2 history words: W n..Wiq n/2 future words: wy,; + - + W, n
> n
2



Weight updating

For each (context, target=w,) pair, only the word vectors from matrix C corresponding
to the context words are updated
Recall that we compute P (w; = w; | context) V w; € V . We compare this distribution to
the true probability distribution (1 for wy, O elsewhere)
Back propagation
If P (w; = w; | context) is overestimated (i.e.,> 0, happens in potentially [V| — 1 cases),
some portion of C’(w;) is subtracted from the context word vectors in C, proportionally to
the magnitude of the error
Reversely, if P (w; = w; | context) is underestimated (< 1, happens in potentially 1 case),
some portion of C’(w;) is added to the context word vectorsin C
— at each step the words move away or get closer to each other in the feature space — clustering

C(wy)
: constant
C(We—ny2) adjustments f\ prediction
. f\ ; error
C(Wt+n/2) :
C(W|V|) ! / 1 C’ VI
_ — Civim C'(wy) C'w)  C(wyp 7
Input — projection projection — output

weight matrix 1 weight matrix



Skip-gram

» skip-gram uses the center word to predict the
surrounding words

» instead of computing the probability of the target
word w, given its previous words, we calculate the
probabilityof the surroundingword w,,;given w,

exp(vatvcvtﬂ)

» p(Wt+j|Wt) = s

»> vl isacolumn ofWVxNand Vw,, |sa column of

W’ nev J = _z z log p(W,4Iw,)

—-n<jsn

» Objective function

Output layer

Y1y

’ .
Ix Y 2j




Word2vec facts

» Complexity is n * m + m = log|V| (Mikolov et al. 2013a)

» n:size of the context window (~10) nxm: dimensions of the projection layer, |V| size of the vocabulary

>  On Google news 6B words training corpus, with |V| ~ 10°:
- CBOW withm = 1000 took 2 days totrain on 140 cores
- Skip-gram with m = 1000 took 2.5 days on 125 cores
- NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m = 100 only!
(note thatm = 1000 was not reasonably feasible on such alarge training set)

» word2vec training speed = 100K-5M words/s

» Quality of the word vectors:
- A significantly with amount of training data and dimension of the word vectors (m),
with diminishing relative improvements
- measured in terms of accuracy on 20K semantic and syntactic association tasks.
e.g., words in bold have to be returned:

Capital-Country | Pasttense Superlative Male-Female Opposite
Athens: Greece | walking: easy: easiest brother: sister | ethical: unethical
walked

» Best NNLM: 12.3% overall accuracy. Word2vec (with Skip-gram): 53.3%

» References: http://www.scribd.com/doc/285890694/NI1PS-Deeplearning Worksh op-NNforText#scribd
https://code.google.com/p/word2vec/

3
8



GloVe

Probability and Ratio | k = solid k = gas k = water k = fashion

P(klice) 19x107* 6.6x107° 3.0x10"3 1.7x1077
P(k|steam) 22x1075 78x107% 22x10"3 1.8x 1075
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Ratio of co-occurrence probabilities

best distinguishesrelevantwords

e X co-occurrence matrix

fweighting function,
* b biasterms
* w; = word vector

~

[ J Wj

context vector

» w; Wi + b; + by = log(Xix)

Cast this into a lease square problem:

1%
J = Z f (Xij) (W;Wj +bi +l~9j - logX,-J-)z
i,j=1

_ (x/Xmax)® if X < Xmax
fx) = { 1 otherwise .

model that utilizes

- countdata

- bilinear prediction-based methods like
word2vec

https://nlp.stanford.edu/pubs/glove.pdf 39




Which is better?

Open question
SVD vs word2vecvs GloVe
All based on co-occurrence
Levy, O., Goldberg, Y., & Dagan, |. (2015)
— SVD performs best on similarity tasks
— Word2vecperforms best on analogy tasks
— Nossingle algorithm consistently outperforms the other methods
— Hyperparameter tuningis important

— 3 outof 6 cases, tuning hyperparametersis more beneficial than
increasingcorpussize

— word2vecoutperformsGloVe on all tasks
— CBOW is worse than skip-gram on all tasks



Applications

Word analogies

Find similar words

— Semantic similarity
— Syntactic similarity
POS tagging

Similar analogies for
different languages

Document classification

seven

three

three

-Sseven

i

~four

~three



Applications

» High quality word vectors boost performance of all NLP tasks, including
document classification, machine translation, information retrieval...
» Examplefor English to Spanish machinetranslation:

0.2r 05-
018} horse 0.4} o caballo (horse)
04} 03f yvaca (cow)
0.05f Cow 0.2F perro (dog)
of pig dog 01}
005| of »cerdo (pig)
-01F -0.1
-0.15 -0.2
02+ -0.3
-0.25- cat -04r O gato (cat)
- ;%.3 —0.125 —Of2 —04115 -0].1 —0‘105 (I) 0.I05 0i1 0.I15 _0;50.5 —0%4 —OT3 —0.12 —0t1 (l) 0%1 Ot2 OTS 0t4 015
About 90% reported accuracy (Mikolov et al. 2013c) Mikolov, T, Le, Q. V., & Sutskever, |. (2013). Exploiting
similarities among languages for machine translation.
arXiv preprintarXiv:1309.4168.
2



Remarkable properties of word vectors

Country and Capital Vectors Projected by PCA

2 T R T T T T I
Chinas
Beijing
15 Russia i
Japan«<
i *Moscow |
Turkey: Ankara ~>Tokyo
0.5 |- i
Poland«
0k Germany« ]
France “Warsaw
s =»Berlin
-05 [taly< Paris .
Athens
Greecex T
1 L Spain¢ Fome ]
x >Madrid
-1.5 - Portugal st isbon ]
-2 ! 1 L L L L :
2 -1.5 -1 -0.5 0 0.5 1 1.5 2

regularities between words are encoded in the difference vectors
e.g., there is a constant country-capital difference vector

w




Remarkable properties of word vectors

06 king
05+
0.4} prince
ol queen cock
bull
0.2 .
princess 4
hen
01
hero
oL cow
actor Iandlord male
01
-0.2—
Iandlady
erojne
-0.3
female
04 I act,ress she , |
-0.8 -0.6 0.4 0.6

constant female-male difference vector

http://www.scribd.com/doc/285890694/NIP S-

Deepl earningWorkshop-NNforText#scribd
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Remarkable properties of word vectors

WOMAN UEENS
A AUNT Q
MAN / KINGS
UNCLE
QUEEN QUEEN
KING KING

constant male-female difference vector constant singular-plural difference vector

» Vector operations are supported and make intuitive sense:

Weinstein — Wscientist + Wpainter = Wpicasso

~

Wking — Wman + Wwoman = Waueen
Wparis — Wfrance + Witaly = Wrome Whis — Whe T Wsne = Wher

Weu — Weopper + Wygold = Way

Wwindows — Wmicrosoft + Wgoogle = Wandroid

» Online demo (scroll down to end of tutorial)
http://rare-technologies.com/word2vec-tutorial/
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Distributed Representations of
Sentences and Documents

DOCZVEC Classifier [on |
Paragraph or document vectors T
Capable of constructing

representationsofinput sequences of
variable length Paragraph Matrx---— E] * * *

Represent each document by a dense

Average/Concatenate UIEUJ]

Paragraph the

vector
Trained to predict wordsin the Vode! Firor rais | B i
ositive/ (Fine-
document - o)t
alve bayes . 0 U%
paragraph vectorand word vectors Sochert ol 2018) N
are averaged or concatenated to Bigran Nae Bl 169% | S8.1%
predict the next word in a context Word Vector Aveaging 199% [ 673%
can be thought ofas another word el i
shared across all contextsin T o1Ab) A% 1 556%
d 0 Cu m ent ?Se(::;;:iv; I;If,uéz(l)ll’g%r)lsor Network 14.6% 54.3%
Paragraph Vector 12.2% 51.3%




Word Mover’s distance

“Edit” distance of 2 documents
Based on word embeddingrepresentations

Incorporate semanticsimilarity between
individual word pairsinto the document
distance metric

Based on “travel cost” between two words
Calculates the cost of movingd to d’
hyper-parameterfree

A
highlyinterpretable document 1 ‘greets’ document 2
‘Obama’
. . Obama The
high retrievalaccuracy speaks ‘O\.. | ‘Spe;k/:, President
to President sreets
the the
media ‘Chicago’ press
in ® ‘media’ in
Illinois O’  oe—8 Chicago
‘Illinois”  Press

word2vec embedding

“minimum cumulative distance that all words in document 1 need to travel to exactly match document2”



Word Mover’s distance example

With the BOW
representation D, and D,
are at equal distance
from D,. Word
embeddings allow to
capture the fact that D,
is closer.

Kusner, M. J.. Sun, E. Y., Kolkin, E. N. I., &
EDU. W. From Word Embeddings To
Document Distances. Proceedings of the
32nd International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP
volume 37.

document 1

Obama
speaks
to
the
media
in
Illinois

D1

A
‘greets’ document 2
‘Obama’ o
o o ihe
. A ) ‘Speaks’ President
President greets
the
‘Chicago’ press
o ‘media’ in
Oﬂ | o ‘ Chicago
‘Illinois” Press
- >
word2vec embedding
Obama|speaks|to the media|in|Illinois.

@07—045&; OZN\ + 020&+ 018&

Dg The President greets the press in Chicago.

1163_049ﬁ+042f +044/+ ozsﬁ

Dy

The

band

gave|a

alconcert|i

in

Japan.
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Word Mover’s distance computation

d; = nc—%c Normalized frequency of word i
j=1C

c(i,j) = ||x; — x;||2 the word embeddings distance among words i,j

* Assumedocumentsd,d’.

* Assumeeach wordifromd can be transformed into any wordjin d’

* Tij = 0 denotes how much of wordi in d travels towordjind’.

* To transform d entirely intod’ : entire outgoing flow from word i equals d;: .

 Transportation problem: n T.. — .
min 3" Tl 25T = di
T>0 5 )
. i Tij = dj
. subject to: ZTz—j =d; Vie{l,...,n}

7j=1
ZTij =d; Vj € {1,...,”}.

=1

* Learn parameters T; then the distance is: Z Tijc(i, j)
1,J=1



Representation Learning for Greek

* Prototype and resources
http://archive.aueb.gr:7000

* Paper: Word Embeddings from Large-Scale Greek
Web Content

https://arxiv.org/abs/1810.06694




EYXAPIZTIEZ ...

Google Scholar: https://bit.ly/2rwmvQU

Twitter: @mvazirg
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