
Representation	Learning	for	Text	and	
Applications

M.	Vazirgiannis
Ecole Polytechnique&	AUEB

Scholar:	https://tinyurl.com/y7ulzoqt

November	2019

1

“a	word	is	defined	by	the	company	it	keeps”	(Firth,	1957)

Language	model

• Goal:	determine	P(s =w& …w()	in	some	domain	of	interest

P s =) P	(w+⃓	w&…w+-&)	
(

+/&

e.g.,	P	 w&w0w1 	=	P	(w&)	P	(w0 	⃓w&)	P	(w1⃓	w&w0)	

• Traditional	n-gram	language	model	assumption:
“the	probability	of	a	word	depends	only	on	context of	n − 1 previous	words”

⇒ P6 s =)P	(w+⃓	w+-78&…w+-&)	
(

+/&

• Typical	ML-smoothing	learning	process	(e.g.,	Katz	1987):

1. compute	P6	 w+⃓	w+-78&…w+-& = 	 #:;<=>?…:;<?:;
#:;<=>?…:;<?

on	training	corpus

2. smooth	to	avoid	zero	probabilities

Representing	Words

Ø One-hot vector
– high	dimensionality
– sparse	vectors
– dimensions=|V|	(10^6<|V|)
– unable	to	capture	semantic	

similarity	between	words
Ø Distributional vector

– words	that	occur	in	similar	
contexts,	tend	to	have	
similar	meanings

– each	word	vector	contains	
the	frequencies	of	all	its	
neighbors

– dimensions=|V|	
– computational	complexity	for	

ML	algorithms

eat

food

news

eat

food

news

3

V

Representing	Words
Ø Word embeddings

– store the same contextual
information in a low-
dimensional vector

– densification (sparse to
dense)

– compression
• dimensionality reduction
• dimensions=m

100<m<500
– able to capture semantic

similarity between words
– learned vectors

(unsupervised)
– Learning methods

• SVD
• word2vec
• GloVe

eat

food

news

4

Example
• We should assign similar probabilities (discover similarity) to Obama

speaks to the media in Illinois and the President addresses the press
in Chicago

• This does not happen because of the “one-hot” vector space
representation

One	hot Word	embeddings

5

SVD	word	embeddings
• Dimensionality	reduction	on	co-occurrence	matrix
• Create	a	|V|x|V|	word	co-occurrence	matrix	X
• Apply	SVD	𝑋 = 𝑈𝑆𝑉D

• Take	first	k	columns	of	U
• Use	the	k-dimensional	vectors	as	representations	for	each	word
• Able	to	capture	semantic	and	syntactic	similarity

6

SVD	application	- Latent	Structure	in	documents

•Documents are represented based on the Vector Space Model
•Vector space model consists of the keywords contained in a document.
•In many cases baseline keyword based performs poorly – not able to detect
synonyms.
•Therefore document clustering is problematic
•Example where of keyword matching with the query: “IDF in computer-
based information look-up”

Doc1

Doc2

Doc3

access document retrieval information theory database indexing computer

x x x x x

x x x

x x x

Indexing	by	Latent	 Semantic	 Analysis	(1990) Scott	 Deerwester,	Susan	T.	Dumais,	George	W.	Furnas,	Thomas	K.	Landauer,	Richard	Harshman,	Journal	of	the	
American	Society	of	Information	 Science

Latent	Semantic	Indexing	(LSI)	-I

• Finding similarity with exact keyword matching is

problematic.

• Using SVD we process the initial document-term document.

• Then we choose the k larger singular values. The resulting
matrix is of order k and is the most similar to the original one
based on the Frobenius norm than any other k-order matrix.

Latent	Semantic	Indexing	(LSI)	- II

• The initial matrix is SVD decomposed as: Α=ULVT

• Choosing the top-k singular values from L we have:

Αk=UkLkVkT ,

• Lk square kxk - top-k singular values of the diagonal in matrix L,

• Uk, mxk matrix - first k columns in U (left singular vectors)

• Vk
T, kxn matrix - first k lines of VT (right singular vectors)

Typical values for κ~200-300 (empirically chosen based on experiments
appearing in the bibliography)

LSI	capabilities

• - Term	to	term	similarity:	ΑkΑk
T=UkLk2Uk

T

• Where Ak=UkLkVt

• - Document-document	similarity:	Αk
TΑk=VkLk2Vk

T

• - Term	document	similarity	(as	an	element	of	the	

transformed	– document	matrix)

• - Extended	query	capabilities	transforming	initial	query	q	

to	qn qn=qTUkLk–1		

• - Thus	qncan	be	regarded	a	line	in	matrix	Vk

LSI	– an	example

LSI application on a term– documentmatrix

C1: Human machine Interface for Lab ABC computer application
C2: A survey of user opinion of computer system response time
C3: The EPS user interface management system
C4: System and human system engineering testing of EPS
C5: Relation of user-perceived response time to error measurements
M1: The generation of random, binary unordered trees
M2: The intersection graph of path in trees
M3: Graph minors IV: Widths of trees and well-quasi-ordering
M4: Graph minors: A survey

• The dataset consists of 2 classes, 1st: “human – computer interaction”
(c1-c5) 2nd: related to graph (m1-m4). After feature extraction the titles
are represented as follows.

Indexing	by	Latent	 Semantic	 Analysis	(1990) Scott	 Deerwester,	Susan	T.	Dumais,	George	W.	Furnas,	Thomas	K.	Landauer,	Richard	Harshman,	Journal	of	the	
American	Society	of	Information	 Science

LSI	– an	example
C1 C2 C3 C4 C5 M1 M2 M3 M4

human 1 0 0 1 0 0 0 0 0
Interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
User 0 1 1 0 1 0 0 0 0
System 0 1 1 2 0 0 0 0 0
Response 0 1 0 0 1 0 0 0 0
Time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 1
Trees 0 0 0 0 0 1 1 1 0
Graph 0 0 0 0 0 0 1 1 1
Minors 0 0 0 0 0 0 0 1 1

LSI	– an	example
A=ULVT

1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 1 1 2 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1

A=

LSI	– an	example

A=ULVT

0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41

0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11

0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49

0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01

0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27

0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05

0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05

0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17

0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58

0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23

0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23

0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18

U=

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

LSI	– an	example

A=ULVT

L=

3.3
4

0 0 0 0 0 0 0 0

0 2.54 0 0 0 0 0 0 0

0 0 2.35 0 0 0 0 0 0

0 0 0 1.64 0 0 0 0 0

0 0 0 0 1.50 0 0 0 0

0 0 0 0 0 1.31 0 0 0

0 0 0 0 0 0 0.85 0 0

0 0 0 0 0 0 0 0.56 0

0 0 0 0 0 0 0 0 0.36

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

LSI	– an	example

A=ULVT

V=

0.20 -0.06 0.11 -0.95 0.05 -0.08 0.18 -0.01 -0.06

0.61 0.17 -0.50 -0.03 -0.21 -0.26 -0.43 0.05 0.24

0.46 -0.13 0.21 0.04 0.38 0.72 -0.24 0.01 0.02

0.54 -0.23 0.57 0.27 -0.21 -0.37 0.26 -0.02 -0.08

0.28 0.11 -0.51 0.15 0.33 0.03 0.67 -0.06 -0.26

0.00 0.19 0.10 0.02 0.39 -0.30 -0.34 0.45 -0.62

0.01 0.44 0.19 0.02 0.35 -0.21 -0.15 -0.76 0.02

0.02 0.62 0.25 0.01 0.15 0.00 0.25 0.45 0.52

0.08 0.53 0.08 -0.03 -0.60 0.36 0.04 -0.07 -0.45

LSI	– an	example
Choosing the 2 largest singular values we have

Lk=
3.34 0

0 2.54

0.22 -0.11
0.20 -0.07
0.24 0.04
0.40 0.06
0.64 -0.17
0.27 0.11
0.27 0.11
0.30 -0.14
0.21 0.27
0.01 0.49
0.04 0.62
0.03 0.45

Uk=

Vk
T=

0.20 0.6
1

0.46 0.54 0.28 0.00 0.02 0.02 0.08

-
0.06

0.1
7

-0.13 -0.23 0.11 0.19 0.44 0.62 0.53

LSI (2	singular	values)

C1 C2 C3 C4 C5 M1 M2 M3 M4
human 0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09
Interface 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
Computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12

User 0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19
System 0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
Response 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22

Time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11
Survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42
Trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
Graph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85
Minors -0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 0.62

Αk =

LSI	Example
• Query: “human computer interaction” retrieves

documents: c1,c2, c4 but not c3 and c5.

• If we submit the same query (based on the
transformation shown before) to the transformed matrix
we retrieve (using cosine similarity) all c1-c5 even if c3

and c5 have no common keyword to the query.

• According to the transformation for the queries we
have:

Query	transformation	

q=

query
human 1
Interface 0
computer 1
User 0
System 0
Response 0
Time 0
EPS 0
Survey 0
Trees 0
Graph 0
Minors 0

1
0
1
0
0
0
0
0
0
0
0

0

Query	transformation

1 0 1 0 0 0 0 0 0 0 0 0qT=
0.22 -0.11

0.20 -0.07

0.24 0.04

0.40 0.06

0.64 -0.17

0.27 0.11

0.27 0.11

0.30 -0.14

0.21 0.27

0.01 0.49

0.04 0.62

0.03 0.45

Uk= Lk=
0.334 0

0 0.254

qn=qTUkLk = 0.138 -0.0273

Query	transformation

Map
docs to
the 2
dim
space
VkLk=

0.20 -0.06
0.61 0.17
0.46 -0.13
0.54 -0.23
0.28 0.11
0.00 0.19
0.01 0.44
0.02 0.62
0.08 0.53

3.34 0
0 2.54

=

0.67 -0.15
2.04 0.43
1.54 -0.33
1.80 -0.58
0.94 0.28
0.00 0.48
0.03 1.12
0.07 1.57
0.27 1.35

qnLk =
0.138 -0.0273 3.34 0

0 2.54
= 0.46 -0.069

Query	transformation

0.99
0.94
0.99
0.99
0.90
-0.14
-0.13
-0.11
0.05

query
C1
C2
C3
C4
C5
M1
M2
M3
M4

• The cosine similarity matrix of query vector to the documents is:

0.5 1 1.5 2

-0.5

1.5

1

0.5

C1

C2

C3
C4

C5
q

m1

m3

m2
m4

SVD	problems
• The	dimensions	of	the	matrix	change	when	dictionary	

changes
• The	whole	decomposition	must	be	re-calculated	when	we	

add	a	word
• Sensitive	to	the	imbalance	in	word	frequency
• Very	high	dimensional	matrix
• Not	suitable	for	millions	of	words	and	documents	
• Quadratic	cost	to	perform	SVD
• Solution:	Directly	calculate	a	low-dimensional	representation

24

Word	analogy

• Words with similar meaning end up
laying close to each other

• Words that share similar contexts
may be analogous

– Synonyms
– Antonyms
– Names
– Colors
– Places
– Interchangeable words

• Vector arithmetics to work with
analogies

• i.e. king - man + woman = queen

25

https://lamyiowce.github.io/word2viz/

But	why?
• what’s an analogy?

𝑝(𝑤G|𝑚𝑎𝑛)
𝑝(𝑤G|𝑤𝑜𝑚𝑎𝑛) ≈

𝑝(𝑤G|𝑘𝑖𝑛𝑔)
𝑝(𝑤G|𝑞𝑢𝑒𝑒𝑛)

Assume PMI is approximated by a low rank approximation of the co-occurrence
matrix.
1. 𝑃𝑀𝐼 𝑤G,𝑤 ≈ 𝑣Z𝑣Z[*inner product*
2. Isotropic:	𝐸Z[[(𝑣Z[𝑣^)]0= | 𝑣^ |0

Then

3. 𝑎𝑟𝑔𝑚𝑖𝑛Z	𝐸Z[[𝑙𝑛
c 𝑤G 𝑤

c 𝑤G 𝑞𝑢𝑒𝑒𝑛 − 𝑙𝑛 c 𝑤G 𝑚𝑎𝑛
c 𝑤G 𝑤𝑜𝑚𝑎𝑛]

0

4. 𝑎𝑟𝑔𝑚𝑖𝑛Z	𝐸Z[[𝑃𝑀𝐼 𝑤G 𝑤 − 𝑃𝑀𝐼 𝑤G 𝑞𝑢𝑒𝑒𝑛 − (𝑃𝑀𝐼 𝑤G 𝑚𝑎𝑛 − 𝑃𝑀𝐼 𝑤G 𝑤𝑜𝑚𝑎𝑛)]0

5. 𝑎𝑟𝑔𝑚𝑖𝑛Z| (𝑣Z−𝑣f^ggh − (𝑣ijh − 𝑣Zkijh)||0
6. 𝑣Z ≈ 𝑣f^ggh − 𝑣Zkijh +𝑣ijh which is an analogy!

• Arora et al (ACL 2016) shows that if (2) holds then (1) holds as well
• So we need to construct vectors from co-occurrence that satisfy (2)
• d<<|V| in order to have isotropic vectors

26
A	Latent	Variable	Model	Approach	to	PMI-based	Word	Embeddings,Arora et al (ACL 2016)

Learning	Word	Vectors
ØCorpus	containing	a	sequence	of T training	words

ØObjective:	f 𝑤o ,… , 𝑤o-h8& =
P6 wp⃓wp-78&…wp-&

ØDecomposed	in	two	parts:

Ø Mapping	C (1-hotv	=>	lower	dimensions)

Ø Mapping	any	g s.t. (estimate	prob t+1|	t	
previous)

f(𝑤o-& ,···,𝑤o-h8&) = g(C(𝑤o-&),···	,C(𝑤o-h8&))
• C(i)	is	the	i-th word	feature	vector	

(Word	embedding)

Ø Objective	function:	𝐽 = &
D
∑ f(𝑤o, … ,𝑤o-h8&)

w+
∈ V

ℝ vmapping 	C

27

Bengio, Yoshua, et al. "A neural probabilistic language model.”
The Journal of Machine Learning Research 3 (2003): 1137-1155.

Neural Net	Language	Model

input context:
(n − 1)	past words

INPUT LAYER 0000......0010
. . .

wp-78& wp-0 wp-&

(n − 1) } V

table lookup in shared C ~ ,v

0010......0000 0000......1000

(n − 1) } mPROJECTION
LAYER
linear

. . .

C(wp-78&) C(wp-0) C(wp-&)

.

500 < h < 1000
(typically)

HIDDEN
LAYER
nonlinear

. . .

OUTPUT
LAYER

. . .
softmax. ip� output = P6	(w+ = wp⃓	wp-78& …wp-&)

tanh

concatenation

V 	probabilities
that sum to 1

input = (context, target) pair: (wp-78&…wp-&,wp)
objective: minimize E = −log	P6 wp⃓wp-78& …wp-&

For each training sequence:

11

Objective	function	

29

p log(p) -log(p)
0,7 -0,15490196 0,15490196

0,2 -0,698970004 0,698970004

• E = −log	P6 wp⃓wp-78&…wp-&
• a	probability	between	0	and	1.	
• On	this	support,	the	log	is	negative		=>	–log	term	positive.	
• makes	sense	to	try	to	minimize	it.	
• Probability	of	word	given	the	context	be	as	high	as	possible	(1	for	a	

perfect	prediction).	
• case	the	error	is	equal	to	0	(global	minimum).

Ø Performs a simple table lookup in C ~ ,v: concatenate the rows of the shared mapping matrix
C ~ ,v corresponding to the context words

Example for a two-word context wp-0wp-& :

Ø C ~ ,v is critical: it contains the weights that are tuned at each step. After training,
it contains what we’re interested in: the word vectors

NNLM	Projection	layer

⋯

V

𝑚

C(w&)
…

C(wp-0)

C(w ~)

…C(wp-&)

V

then

ü

.	

C(wp-0)Concatenate and →

C ~ ,v

…

ü

C(wp-&)

0000......0010wp-0

wp-& 0001......0000

1

1

2
2

1 2

30

NNLM	hidden/output	layers	and	training
Ø Softmax (log-linear classification model) is used to output positive numbers that sum to one (a

multinomial probability distribution):
for the ip� unit in the output layer: P6 w+ = wp⃓	wp-78& …wp-& = 	 ���;

∑ �
��;[�

;[�?
Where:
- 𝑦 = 𝑏 +𝑈. 𝑡𝑎𝑛ℎ 𝑑 + 𝐻. 𝑥
- tanh	: nonlinear squashing (link) function
- x : concatenation C w of the context weight vectors seen previously
- b : output layer biases (V 	elements)
- d	: hidden layer biases (h elements). Typically 500 < h < 1000
- U : V * h matrix storing the hidden-to-output weights
- H : (h * (n − 1)m) matrix storing the projection-to-hidden weights
→ 𝜽 = (𝒃,𝒅, 𝑼,𝑯,𝑪)

• Complexity per training sequence: n ∗ m +n ∗ m ∗ h +𝐡 ∗ 𝐕
computational bottleneck: nonlinear hidden layer (h ∗ V term)

Ø Training is performed via stochastic gradient descent (learning rate ε):

θ ← θ + ε }
𝜕E
𝜕θ 	= θ + ε }

𝜕logP6	 wp⃓	wp-78&…wp-&

𝜕θ
(weights are initialized randomly, then updated via backpropagation)

31

• tested	on	Brown	(1.2M	words,	 V ≅ 16K)	and	AP	News	(14M	words,	 V ≅ 150K	reduced	to	
18K)	corpuses	

• Brown:	h = 100,	n = 5,	m = 30

• AP	News:	h = 60,	n = 6,	m = 100,	3	week	training	using	40	cores

• 24%	and	8%	relative	improvement	(resp.)	over	traditional	smoothed	n-gram	LMs
• in	terms	of	test	set	perplexity:	geometric	average	of	1/P6 wp⃓		wp-78&…wp-&

• Due	to	complexity,	NNLM	can’t	be	applied	to	large	data	sets	→ poor	performance	on	rare	
words

• Bengio et	al.	(2003)	initially	thought	their	main	contribution	was	a	more	accurate	LM.	They	
let	the	interpretation	and	use	of	the	word	vectors	as	future	work

• On	the	opposite,	Mikolov et	al.	(2013)	focus	on	the	word	vectors

NNLM	facts

32

Word2Vec

ØMikolov	et	al.	in	2013
ØKey	idea	of	word2vec:	achieve	better	performance	not	by	using	a	more	
complex	model	(i.e.,	with	more	layers),	but	by	allowing	a	simpler	
(shallower)	model	to	be	trained	on	much	larger	amounts	of	data

Ø no	hidden	 layer	(leads	to	1000X	speedup)

Ø projection	 layer	is	shared	(not	just	the	weight	matrix)	- C

Ø context:	words	from	both	history	&	future:

• Two	algorithms	 for	learning	words	vectors:

- CBOW:	from	context	predict	target	

- Skip-gram:	from	target	predict	context

33

Continuous	Bag-of-Words	(CBOW)

Ø continuous	bag-of-words

Ø continuous	representations	whose	
order	is	of	no	importance

Øuses	the	surrounding	words	to	predict	
the	center	word

Øn-words	before	and	after	the	target	
word

34

Efficient	Estimation	of	Word	Representations	in	Vector	
Space- Mikolov et	al.	2013

hierarchical	softmax. tp� output		=	P	(w+ = wp⃓	wp-78& …wp-&)

input	context:

INPUT	LAYER 1	0	0	0	1	0	0	0	0	0	0		1	0	0	1	0	0	0	0	0	0	1	0 V

table	lookup	 in	shared	C ~ ,v

PROJECTION
LAYER
linear 1

n } C ⊡

.	.	.

.	.	.

averaging

OUTPUT
LAYER

V 	probabilities	
that	sum	to	1

n ≅ 8 typically

100 < m < 1000
typically

⊡=

n 2	⁄ history	words:	wp-=®
…wp-&

0000..
.0010

0000..
.0010

…

n 2	⁄ future	words:	wp8& +⋯+wp8=®

0000..
.0010

0000..
.0010

…

C’

Continuous	Bag-of-Words	(CBOW)
input	=	(context,	target)	pair:	(wp-=®

…wp-&wp8& …wp8=®
,wp)

objective:	minimize	−logP6 wp⃓wp-78& …wp-&

For	each	training	sequence:

Weight	updating
Ø For	each	(context,	target=wp)	pair,	only	the	word	vectors	from	matrix	C corresponding	

to	the	context	words	are	updated
Ø Recall	that	we	compute	P	(w+ = wp⃓	context) ∀	w+ ∈ V .	We	compare	this	distribution	 to	

the	true	probability	 distribution	 (1	for	wp,	0	elsewhere)
Ø Back	propagation
Ø If	P	(w+ = wp⃓	context) is	overestimated	(i.e.,	> 0,	happens	 in	potentially	 V − 1 cases),	

some	portion	of	C’(w+) is	subtracted from	the	context	word	vectors	in	C,	proportionally	 to	
the	magnitude	of	the	error	

Ø Reversely,	if	P	(w+ = wp⃓	context) is	underestimated	(< 1,	happens	 in	potentially	1	case),	
some	portion	of	C’(w+)	is	added to	the	context	word	vectors	in	C
→	at	each	step	the	words	move	away	or	get	closer	to	each	other	in	the	feature	space	→ clustering

input → projection
weight matrix

projection → output
weight matrix

⋯
C(w&)

…

C(wp-7/0)

C(w ~)

…

C(wp87/0)

C ~ ,v

…

C′v, ~

prediction
error…

C′(w&) C′(w+)

…

C′(w ~)

constant
adjustments

1
8

Skip-gram

Ø skip-gram	uses	the	center	word	to	predict	the	
surrounding	words

Ø instead	of	computing	the	probability	of	the	target	
wordwt given	its	previous	words,	we	calculate	the	
probability	of	the	surrounding	word wt+j	given wt

Øp 𝑤o8¶ 𝑤o =
�·¸	(𝒗𝒘𝒕

𝑻 𝒗𝒘𝒕>𝒋
[)

∑ �·¸	(𝒗𝒘𝒕
𝑻 𝒗𝒘𝒕>𝒋

[)¾∈¿

Ø vT
wt is	a	column	of	WVxN and	𝒗𝒘𝒕>𝒋

G is	a	column	of	
W’NxV

ØObjective	function

𝐽 =
1
𝑇Á Á log	p(𝑤o8¶|𝑤o)

-hÂ¶Âh

D

o/&

37

Efficient	Estimation	of	Word	Representations	in	Vector	
Space-Mikolov et	al.	2013

Word2vec	facts
Ø Complexity	 is	𝐧 ∗ 𝐦 +𝐦 ∗ 𝐥𝐨𝐠 𝐕 (Mikolov	 et	al.	2013a)

Ø n:size of	the	context	window	 (~10)	nxm:	dimensions	 of	the	projection	 layer,	|V| size	of	the	vocabulary
Ø On	Google	news	6B	words	training	corpus,	with	 𝐕 	~ 10É:

- CBOW	with	m = 1000 took	2	days	to	train	on	140	cores
- Skip-gram	with	m = 1000 took	2.5	days	on	125	cores
- NNLM	(Bengio	et	al.	2003)	took	14	days	on	180	cores,	for	m = 100 only!
(note	that	m = 1000	was	not	reasonably	feasible	on	such	 a	large	training	set)

Ø word2vec	training	speed	≅ 100K-5M	words/s

Ø Quality	of	the	word	vectors:
- ↗	significantly	with	amount	of	training	data	and	dimension	of	the	word	vectors (m),	

with	diminishing	 relative	improvements
- measured	in	terms	of	accuracy	on	20K	semantic	and	syntactic	association	tasks.	
e.g.,	words	in	bold have	to	be	returned:

Ø Best	NNLM:	12.3%	overall	accuracy.	Word2vec	 (with	Skip-gram):	53.3%

Ø References:	http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd
https://code.google.com/p/word2vec/

Capital-Country Past tense Superlative Male-Female Opposite

Athens: Greece walking:
walked

easy: easiest brother: sister ethical: unethical

3
8

GloVe
• Ratio	of	co-occurrence	probabilities	

best	distinguishes	relevant	words

• Cast this into a lease square problem:

• X co-occurrence	matrix
• f weighting	function,	
• b	bias	terms
• 𝑤Ê = 𝑤𝑜𝑟𝑑	𝑣𝑒𝑐𝑡𝑜𝑟
• 𝑤¶Ì = 𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑣𝑒𝑐𝑡𝑜𝑟

39https://nlp.stanford.edu/pubs/glove.pdf

model	that	utilizes	
- count	data	
- bilinear	prediction-based	methods	like	

word2vec

Which	is	better?
• Open	question
• SVD	vs	word2vec	vs	GloVe
• All	based	on	co-occurrence
• Levy,	O.,	Goldberg,	Y.,	&	Dagan,	I.	(2015)

– SVD	performs	best	on	similarity	tasks
– Word2vec	performs	best	on	analogy	tasks
– No	single	algorithm	consistently	outperforms	the	other	methods
– Hyperparameter tuning	is	important
– 3	out	of	6	cases,	tuning	hyperparameters is	more	beneficial	than	

increasing	corpus	size
– word2vec	outperforms	GloVeon	all	tasks
– CBOW	is	worse	than	skip-gram	on	all	tasks

40

Applications
• Word	analogies
• Find	similar	words

– Semantic	similarity
– Syntactic	similarity

• POS	tagging
• Similar	analogies	for	

different	languages
• Document	classification

41

https://lamyiowce.github.io/word2viz/

Applications
Ø High	quality	word	vectors	boost	performance	of	all	NLP	tasks,	including	

document	classification,	machine	translation,	information	retrieval…
Ø Example	for	English	to	Spanish	machine	translation:

About	90%	reported	accuracy	(Mikolov et	al.	2013c)

2
9

Mikolov,	T.,	Le,	Q.	V.,	&	Sutskever,	I.	(2013).	Exploiting	
similarities	among	languages	for	machine	translation.	
arXiv	preprint	arXiv:1309.4168.

Remarkable	properties	of	word	vectors

regularities	between	words	are	encoded	 in	the	difference	vectors	
e.g.,	there	is	a	constant	country-capitaldifference	vector

Mikolov et al. (2013b)
Distributed	representations	of	
words	and	phrases	and	their	
compositionality3

0

Remarkable	properties	of	word	vectors

constant	female-male difference	vector

31

http://www.scribd.com/doc/285890694/NIPS-
DeepLearningWorkshop-NNforText#scribd

constant	male-female difference	vector

Remarkable	properties	of	word	vectors

Ø Vector	operations	 are	supported	 and	make	intuitive	sense:

𝑤ÍÊhÎ − 𝑤ijh +𝑤Zkijh ≅ 𝑤f^ggh

𝑤cjÏÊÐ −𝑤ÑÏjhÒg +𝑤ÊojÓÔ ≅ 𝑤Ïkig 𝑤ÕÊÐ −𝑤Õg + 𝑤ÐÕg ≅ 𝑤ÕgÏ

𝑤gÊhÐogÊh − 𝑤ÐÒÊghoÊÐo + 𝑤cjÊhogÏ ≅ 𝑤cÊÒjÐÐk

𝑤ZÊhÖkZÐ − 𝑤iÊÒÏkÐkÑo + 𝑤ÎkkÎÓg ≅ 𝑤jhÖÏkÊÖ 𝑤Ò^ − 𝑤ÒkccgÏ + 𝑤ÎkÓÖ ≅ 𝑤j^

constant	singular-plural difference	vector

Ø Online	 demo (scroll	down	to	end	of	tutorial)

32
http://rare-technologies.com/word2vec-tutorial/

Distributed	Representations	of	
Sentences	and	Documents

• Doc2vec
• Paragraph	or	document	vectors
• Capable	of	constructing	

representations	of	input	sequences	of	
variable	length

• Represent	each	document	by	a	dense	
vector

• Trained	to	predict	words	in	the	
document

• paragraph	vector	and	word	vectors	
are	averaged	or	concatenated	to	
predict	the	next	word	in	a	context

• can	be	thought	of	as	another	word	
shared	across	all	contexts	in	
document

46

https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Word	Mover’s	distance
• “Edit”	distance	of	2	documents
• Based	on	word	embedding	representations
• Incorporate	semantic	similarity	between	

individual	word	pairs	into	the	document	
distance	metric

• Based	on	“travel	cost”	between	two	words
• Calculates	the	cost	of	moving	d	to	d’
• hyper-parameter	free
• highly	interpretable
• high	retrieval	accuracy

47

“minimum	cumulative	distance	that	all	words	in	document	1	need	to	travel	to	exactly	match	document	2”

Word	Mover’s	distance	example
With the BOW
representation D& and D0
are at equal distance
from DØ. Word
embeddings allow to
capture the fact that D&
is closer.

35

Kusner, M. J., Sun, E. Y., Kolkin, E. N. I., &
EDU, W. From Word Embeddings To
Document Distances. Proceedings of the
32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP
volume 37.

Word	Mover’s	distance	computation

:	Normalized	frequency	of	word	i

the	word	embeddings distance	among	words	i, j

• Assume	documents	d, d’.
• Assume	each	word	i from	d can	be	transformed	into	any	word	j in	d’
• Tij ≥ 0 denotes	how	much	of	word	i in	d travels	to	word	j in	d’ .
• To	transform	d entirely	into	d’ : entire	outgoing	flow	from	word	i equals	di :	.
• Transportation	problem:	

•

• Learn	parameters	Tij then	the	distance	is:	

Representation	Learning	for	Greek

• Prototype	and	resources
http://archive.aueb.gr:7000

• Paper:	 Word	Embeddings from	Large-Scale	Greek	
Web	Content

https://arxiv.org/abs/1810.06694

ΕΥΧΑΡΙΣΤΙΕΣ	...!

Google	Scholar:	https://bit.ly/2rwmvQU
Twitter:	@mvazirg

References
• Bengio,	Y.,	Ducharme,	R.,	Vincent,	P.,	&	Janvin,	C.	(2003).	A	Neural	Probabilistic	 Language	Model.	

The	Journal	of	Machine	Learning	Research,	3,	1137–
1155. http://doi.org/10.1162/153244303322533223

• Mikolov,	T.,	Corrado,	G.,	Chen,	K.,	&	Dean,	J.	(2013).	Efficient	Estimation	of	Word	Representations	 in	
Vector	Space.	Proceedings	of	the	International	Conference	on	Learning	Representations	(ICLR	
2013),	1–12.

• Mikolov,	T.,	Chen,	K.,	Corrado,	G.,	&	Dean,	J.	(2013).	Distributed	Representations	of	Words	and	
Phrases	and	their	Compositionality.	NIPS,	1–9.

• Collobert,	R.,	&	Weston,	J.	(2008).	A	unified	architecture	 for	natural	language	processing.	
Proceedings	of	the	25th	International	Conference	on	Machine	Learning	- ICML	’08,	20(1),	160–
167. http://doi.org/10.1145/1390156.1390177

• Kim,	Y.,	Jernite,	Y.,	Sontag,	D.,	&	Rush,	A.	M.	(2016).	Character-Aware	Neural	Language	Models.	
AAAI.	Retrieved	 fromhttp://arxiv.org/abs/1508.06615

• Jozefowicz,	R.,	Vinyals,	O.,	Schuster,	M.,	Shazeer,	N.,	&	Wu,	Y.	(2016).	Exploring	the	Limits	of	
Language	Modeling.	Retrieved	 from http://arxiv.org/abs/1602.02410

• Collobert,	R.,	Weston,	J.,	Bottou,	L.,	Karlen,	M.,	Kavukcuoglu,	K.,	&	Kuksa,	P.	(2011).	Natural	
Language	Processing	(almost)	from	Scratch.	Journal	of	Machine	Learning	Research,	12	(Aug),	2493–
2537.	Retrieved	from http://arxiv.org/abs/1103.0398

• Chen,	W.,	Grangier,	D.,	&	Auli,	M.	(2015).	Strategies	for	Training	Large	Vocabulary	Neural	Language	
Models,	12.	Retrieved	 from http://arxiv.org/abs/1512.04906

52

More	References

• Levy,	O.,	Goldberg,	Y.,	&	Dagan,	I.	(2015).	Improving	Distributional	Similarity	 with	Lessons	Learned	
from	Word	Embeddings.	Transactions	of	the	Association	for	Computational	Linguistics,	3,	211–225.	
Retrieved	 from https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570

• Pennington,	J.,	Socher,	R.,	&	Manning,	C.	D.	(2014).	Glove:	Global	Vectors	for	Word	Representation.	
Proceedings	of	the	2014	Conference	on	Empirical	 Methods	in	Natural	Language	Processing,	1532–
1543. http://doi.org/10.3115/v1/D14-1162

• Baroni,	M.,	Dinu,	G.,	&	Kruszewski,	G.	(2014).	Don’t	count,	predict!	A	systematic	comparison	of	
context-counting	vs.	context-predicting	semantic	vectors.	ACL,	238–
247. http://doi.org/10.3115/v1/P14-1023

• Levy,	O.,	&	Goldberg,	Y.	(2014).	Neural	Word	Embedding	as	Implicit	Matrix	Factorization.	Advances	
in	Neural	Information	Processing	Systems	(NIPS),	2177–2185.	Retrieved	
from http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization

• Hamilton,	W.	L.,	Clark,	K.,	Leskovec,	J.,	&	Jurafsky,	D.	(2016).	Inducing	Domain-Specific	Sentiment	
Lexicons	 from	Unlabeled	Corpora.	Proceedings	of	the	54th	Annual	Meeting	of	the	Association	for	
Computational	Linguistics.	Retrieved	 from http://arxiv.org/abs/1606.02820

• Hamilton,	W.	L.,	Leskovec,	J.,	&	Jurafsky,	D.	(2016).	Diachronic	Word	Embeddings Reveal	Statistical	
Laws	of	Semantic	Change.	arXiv Preprint	arXiv:1605.09096.

53

References- blogs
• Sebastian	Ruder	blog	series	on	Word	Embeddings,	 http://sebastianruder.com/
• Andy	 Jones	blog	on	word2vec,	

http://andyljones.tumblr.com/post/111299309808/why-word2vec-works
• Arora et al, https://arxiv.org/pdf/1502.03520v7.pdf
• Piotr Migdał ,	http://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html

54

References	and	online	resources
• Artificial	neural	networks:	A	tutorial,	AK	Jain,	J	Mao,	KM	Mohiuddin - Computer,	1996	
• introduction	from	a	coder's	perspective: http://karpathy.github.io/neuralnets/
• http://cs231n.github.io/
• online	book:	 	http://neuralnetworksanddeeplearning.com/index.html
• history	of	neural	nets:	http://stats.stackexchange.com/questions/182734/what-is-the-difference-

between-a-neural-network-and-a-deep-neural-network
• nice	blog	post	on	neural	nets	applied	to	NLP:	http://colah.github.io/posts/2014-07-NLP-RNNs-

Representations/
• A	Primer	on	Neural	Network	Models	for	Natural	Language	Processing,	Y.	Goldberg,	

u.cs.biu.ac.il/~yogo/nnlp.pdf

