



# How to build scalable **SPARQL** engines for Big **RDF** data

#### Panos Kalnis

King Abdullah University of Science and Technology (KAUST)





# **KAUST.edu.SA**



la kaust.edu.sa

RESEARCH

Learn About Our Research

C

Addressing Pressing Challenges Through Science

KAUST provides a unique environment for researchers to conduct high-impact research. Learn about our Research Centers

#### **INNOVATE**

About Innovation & Economic Development

# Info: Panos.Kalnis@kaust.edu.sa

- Paid internships for undergrads
- Scholarships for Master's & PhDs
- PostDoc
- Faculty positions





- Big Data, Analytics
- Cloud, Parallel, Distributed, HPC
- Machine Learning, Al
- Visual Computing
- Bio-Informatics
- Cyber-Security

#### Systems for Big Data & Machine Learning





#### Systems for Big Data & Machine Learning



### Paid Remote Internships

- Final year undergraduates, or Master's
- 3 6 months, start anytime
- US\$ 1000 / month
- Meetings via Zoom
- Can be combined with final year project
  - Διπλωματική / Πτυχιακή εργασία



Klearchos Kosmanos MSc – Aristotle Univ. Thessaloniki



Kelly Kostopoulou PhD – Columbia Univ. New York



Stamatis Anoustis PhD - KAUST

#### Graphs are Everywhere...



#### ...But processing is expensive

• E.g., subgraph isomorphism, NP

# "Big": CPU vs. Big size









Image from: https://aws.amazon.com/blogs/apn/exploring-knowledge-graphs-on-amazon-neptune-using-metaphactory/

11 Billion DBpedia

23 Billion

#### Pub<sup>©</sup>hem 130 Billion

**RDF**: Set of triples:

#### < Subject Predicate Object >

| James | gradFrom | MIT  |
|-------|----------|------|
| EE    | subOrgOf | MIT  |
| James | worksFor | CS   |
| CS    | subOrgOf | MIT  |
| Lisa  | advisor  | Bill |
| John  | advisor  | Bill |
|       | •••      |      |
|       | •••      |      |

**RDF**: Set of triples:

or

#### Directed edge-labelled graph



| James | gradFrom | MIT  |
|-------|----------|------|
| EE    | subOrgOf | MIT  |
| James | worksFor | CS   |
| CS    | subOrgOf | MIT  |
| Lisa  | advisor  | Bill |
| John  | advisor  | Bill |
|       | •••      |      |
|       | •••      |      |



**RDF**: Set of triples:

or

#### Directed edge-labelled graph





**SPARQL**: query language for RDF

| SELECT | ?prof  | ?stud | WHERE | { |
|--------|--------|-------|-------|---|
| ?pro:  | f worl | csFor | CS    | • |
| ?stu   | d advi | lsor  | ?prof | • |
| •      |        |       |       |   |

Return all professors who work for CS department, and their students

**SPARQL**: query language for RDF

| SELECT | ?prof  | ?stud | WHERE | { |
|--------|--------|-------|-------|---|
| ?prof  | work   | ksFor | CS    | • |
| ?stud  | l advi | lsor  | ?prof | • |

Return all professors who work for CS department, and their students



**SPARQL**: query language for RDF

| SELECT | ?prof | ?stud | WHERE | { |
|--------|-------|-------|-------|---|
| ?prof  | work  | sFor  | CS    | • |
| ?stud  | advi  | .sor  | ?prof | • |
|        |       |       |       |   |

Return all professors who work for CS department, and their students



**RDF**: Directed edge-labelled graph



**SPARQL**: query language for RDF

| SELECT | ?prof | ?stud | WHERE | { |
|--------|-------|-------|-------|---|
| ?prof  | work  | csFor | CS    | • |
| ?stuc  | advi  | lsor  | ?prof | • |
|        |       |       |       |   |

Return all professors who work for CS department, and their students



**RDF**: Directed edge-labelled graph



**SPARQL**: query language for RDF

| SELECT | ?prof | ?stud | WHERE | { |
|--------|-------|-------|-------|---|
| ?prof  | work  | sFor  | CS    | • |
| ?stud  | advi  | .sor  | ?prof | • |
| •      |       |       |       |   |

Return all professors who work for CS department, and their students



**RDF**: Directed edge-labelled graph



#### AdPart: Dynamic Partitioning • In: VLDB Journal, 2016

- Evaluating SPARQL queries on massive RDF datasets, **PVLDB**, 2015
- Survey & experimental comparison of distributed SPARQL engines for very large RDF data, PVLDB, 2017
- Query optimizations over decentralized RDF graphs, ICDE, 2017
- Lusail: a system for querying linked data at scale, PVDLB, 2017
- A demonstration of Lusail: Querying linked data at scale, (demo) SIGMOD, 2017

#### Classification of RDF systems



### Partitioning for Parallel Processing





# AdPart – Dynamic Partitioning



14

#### AdPart is at least 10x faster

Table 6: Runtime for LUBM-10240 queries (ms). SM: Single Machine, MR: MapReduce, and SS: Specialized systems. S2X failed to execute all queries; gStore and gStoreD could not preprocess the data within 24 hours.

|               | T LIDNA 10940                    | Complex Queries |               | Simple Queries  |             |            | Geo-          | Query /h    |            |           |
|---------------|----------------------------------|-----------------|---------------|-----------------|-------------|------------|---------------|-------------|------------|-----------|
|               | LODW-10240                       | L1              | $\mathbf{L2}$ | L3              | L7          | L4         | $\mathbf{L5}$ | L6          | Mean       | Query/II  |
| $\mathbf{SM}$ | RDF-3X                           | 1,812,250       | 101,750       | $1,\!898,\!500$ | $98,\!250$  | 38         | 20            | 526         | 10,466     | 6         |
|               | SHARD                            | 413,720         | $187,\!310$   | N/A             | 469,340     | 358,200    | $116,\!620$   | $209,\!800$ | 261,362    | N/A       |
|               | H2RDF+                           | $285,\!430$     | 71,720        | $264,\!780$     | 180,320     | $24,\!120$ | $4,\!760$     | $22,\!910$  | 59,275     | 30        |
| $\mathbf{MR}$ | CliqueSquare                     | 125,020         | $71,\!010$    | 80,010          | $224,\!040$ | 90,010     | $24,\!000$    | $37,\!010$  | $74,\!488$ | 39        |
|               | S2RDF-VP                         | 217,537         | $28,\!917$    | $145,\!761$     | 29,965      | 46,770     | $5,\!233$     | $11,\!308$  | $35,\!845$ | 52        |
|               | S2RDF-ExtVP                      | $46,\!552$      | $35,\!802$    | $21,\!533$      | $47,\!343$  | 9,222      | 2,718         | $4,\!555$   | $15,\!275$ | 150       |
|               | AdPart-NA                        | 2,743           | 120           | 320             | 3,203       | 1          | 1             | 40          | 75         | $3,\!920$ |
|               | TriAD                            | 6,023           | $1,\!519$     | $2,\!387$       | $17,\!586$  | 6          | 4             | 114         | 369        | 912       |
|               | $\mathbf{TriAD}$ - $\mathbf{SG}$ | 5,392           | 1,774         | $4,\!636$       | $21,\!567$  | 9          | <b>5</b>      | 10          | 333        | 755       |
|               | Urika-GD                         | 5,835           | $2,\!396$     | $1,\!871$       | $6,\!951$   | 1,442      | 720           | $1,\!588$   | 2,259      | $1,\!211$ |
| $\mathbf{SS}$ | H-RDF-3X                         | 7,004           | $2,\!640$     | $7,\!957$       | $7,\!175$   | $1,\!635$  | $1,\!586$     | $1,\!965$   | 3,412      | 841       |
|               | H-RDF-3X (in-memory)             | 6,841           | $2,\!597$     | $7,\!948$       | $7,\!551$   | 1,596      | $1,\!594$     | $1,\!926$   | 3,397      | 839       |
|               | SHAPE                            | 25,319          | $4,\!387$     | $25,\!360$      | $15,\!026$  | 1,603      | $1,\!574$     | $1,\!567$   | 5,575      | 337       |
|               | DREAM                            | 13,031,410      | $98,\!263$    | $2,\!358$       | 4,700,381   | 18         | 14            | 10,755      | 12,110     | 1         |
|               | DREAM (cached)                   | $1,\!843,\!376$ | $98,\!263$    | <1              | $83,\!053$  | 18         | 14            | 468         | 911        | 12        |



- Specialized for Graphs
- 1000x of CPU cores, TBs of RAM
- NUMA architecture
  - Global memory address space
  - Specialized network
  - Transparent to programmer

# Spartex: RDF meets Graph Analytics

• In: IEEE Trans. On Parallel and Distributed Systems, 2017

### RDF Analytics: Drug Repositioning



#### RDF Analytics: Drug Repositioning



#### Vertex-Centric Framework: Pregel, ...

















#### SPARTEX: RDF @ Vertex-centric [Kalnis et al., IEEE-TPDS, 2017]



# SPARTEX syntax (1)

PREFIX sptx: <http://www.spartex.com/analytics/> CALL com.sptx.algo.centrality() AS sptx:centrality CALL com.sptx.algo.PageRank(max\_iter) AS sptx:pRank SELECT ?s WHERE teaches ?c . ?p ?s takes ?c. ?s advisor ?p . ?p sptx:pRank ?rank . sptx:centrality ?cent . ?c FILTER (?rank > val1 && ?cent > val2)



## SPARTEX syntax (2)

```
PREFIX sptx: <http://www.spartex.com/analytics/>
CALL com.sptx.algo.centrality() AS sptx:centrality
CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank
ADD TRIPLE { ?p sptx:popular "T" . } WHERE {
   ?p teaches ?c .
   ?s takes ?c .
   ?s advisor ?p .
   ?p sptx:pRank ?rank .
   ?c sptx:centrality ?cent .
   FILTER (?rank > val1 && ?cent > val2)
FILTER_VERTEX AS start WHERE {
 ?p sptx:popular "T" .
CALL algo:SSSP() USING start AS sptx:sssp
```


#### SPARTEX: 10x faster



# MAGiQ: Portability and Scalability

- Demo in PVLDB, 2018
- In: Proc. of EuroSys, 2019

# Existing Engines and Large Graphs

#### • Expensive indices

#### Data loading time (minutes) Memory consumption (GB) ■ Wukong [OSDI '16] This work

Data: LUBM-1B (1.3B edges); Hardware: Linux server, 24 cores@2.4Ghz, 512GB

#### [almost no indices]

# Existing Engines and Data-intensive Queries

- Slow and difficult to port to different HW [effortlessly portable]
  - Distributed AdPart [VLDBJ '16]
  - GPU Wukong+G [ATC '18]



■ Wukong [OSDI '16] ■ This work (CPU) ■ This work (GPU)

Data: LUBM-1B (1.3B edges); Hardware: Linux server, 24 cores@2.4Ghz, 512GB, NVIDIA Quadro P6000

# Our Proposal: MAGiQ

- Translate graph queries into matrix algebra programs:
  - Decouple query evaluation logic from particular HW [Portability]
  - Compact sparse matrix representation of input graphs [Scalability]
  - Utilize highly efficient existing matrix algebra libraries



[Efficiency]

#### Graphs as Matrices... old news?



GraphBLAS



- Represent graphs as sparse matrices
- Define common operations
- Matrix  $\mathbf{x}$  Vector  $\rightarrow$  BFS

| Algorithm (Problem)              | Canonical<br>Complexity            | LA-Based<br>Complexity                         |
|----------------------------------|------------------------------------|------------------------------------------------|
| Breadth-first search             | <i>Θ</i> ( <i>m</i> )              | <i>Θ</i> ( <i>m</i> )                          |
| Betweenness Centrality           | Θ(mn)                              | Θ(mn)                                          |
| (unweighted)                     |                                    |                                                |
| All-pairs shortest-paths (dense) | Θ(n <sup>3</sup> )                 | Θ( <b>n</b> <sup>3</sup> )                     |
| Prim (MST)                       | $\Theta(m+n \log n)$               | Θ(n <sup>2</sup> )                             |
| Borůvka (MST)                    | <i>Θ</i> ( <i>m</i> log <i>n</i> ) | <i>Θ</i> ( <i>m</i> log <i>n</i> )             |
| Edmonds-Karp (Max Flow)          | Θ(m <sup>2</sup> n)                | Θ(m²n)                                         |
| Greedy MIS (MIS)                 | $\Theta(m+n \log n)$               | <i>Θ</i> ( <i>mn</i> + <i>n</i> <sup>2</sup> ) |
| Luby (MIS)                       | $\Theta(m+n \log n)$               | $\Theta(m \log n)$                             |

## MAGIQ – RDF Graph Representation





Α

Pre-processing  $\rightarrow$  Matrix operations  $\rightarrow$  Post-processing

## MAGIQ – RDF Graph Representation



Pre-processing  $\rightarrow$  Matrix operations  $\rightarrow$  Post-processing

## Selection as Matrix Multiplication



• S: 1 at row  $i \rightarrow$  select row i from M

## Generalized Matrix Selection



- Semi-ring with
  - isEqual instead of multiplication
  - OR instead of addition

## MAGIQ – Algebraic Operations

Matrix-matrix multiplication over isEqual , OR semi-ring



## MAGIQ – Algebraic Operations

Matrix-matrix multiplication over isEqual , OR semi-ring



## MAGIQ - Algebraic Operations

Matrix-matrix multiplication over *isEqual*, OR *semi-ring* 

#### Row selection with predicate:

neighbors connected to **C** and **E** with **e** outgoing edges





### MAGIQ – Algebraic Operations

**any**(**M**): reduction with **OR** 



## MAGIQ – Algebraic Operations

diag(v): construct diagonal selection matrix



| SELECT | ?x ?y WHERE  | { |
|--------|--------------|---|
| ?x     | <a> ?y .</a> |   |
| }      |              |   |





| SELECT | ?x ?y WHERE  | { |
|--------|--------------|---|
| ?x     | <a> ?y .</a> |   |
| }      |              |   |







| SELECT | ?x ?y WHERE  | { |
|--------|--------------|---|
| ?x     | <a> ?y .</a> |   |
| }      |              |   |







| SELECT | ?x ?y WHERE  | { |
|--------|--------------|---|
| ?x     | <a> ?y .</a> |   |
| }      |              |   |







Graph query translation



Graph query translation



Graph query translation



Graph query translation



# $$\begin{split} \mathbf{M}_{xy} &= \mathbf{I} * a \otimes \mathbf{A} \\ \mathbf{M}_{yz} &= \mathtt{diag}(\mathtt{any}(\mathbf{M}_{xy}')) * c \otimes \mathbf{A} \\ \mathbf{M}_{xy} &= \mathbf{M}_{xy} \times \mathtt{diag}(\mathtt{any}(\mathbf{M}_{yz})) \\ \mathbf{M}_{xw} &= \mathtt{diag}(\mathtt{any}(\mathbf{M}_{xy})) * b \otimes \mathbf{A} \end{split}$$

Graph query translation



$$\begin{split} \mathbf{M}_{xy} &= \mathbf{I} * a \otimes \mathbf{A} \\ \mathbf{M}_{yz} &= \mathtt{diag}(\mathtt{any}(\mathbf{M}'_{xy})) * c \otimes \mathbf{A} \\ \mathbf{M}_{xy} &= \mathbf{M}_{xy} \times \mathtt{diag}(\mathtt{any}(\mathbf{M}_{yz})) \\ \mathbf{M}_{xw} &= \mathtt{diag}(\mathtt{any}(\mathbf{M}_{xy})) * b \otimes \mathbf{A} \end{split}$$

Graph query translation



Graph query translation



$$\begin{split} \mathbf{M}_{xy} &= \mathbf{I} * a \otimes \mathbf{A} \\ \mathbf{M}_{yz} &= \mathtt{diag}(\mathtt{any}(\mathbf{M}_{xy}')) * c \otimes \mathbf{A} \\ \mathbf{M}_{xy} &= \mathbf{M}_{xy} \times \mathtt{diag}(\mathtt{any}(\mathbf{M}_{yz})) \\ \mathbf{M}_{xw} &= \mathtt{diag}(\mathtt{any}(\mathbf{M}_{xy})) * b \otimes \mathbf{A} \end{split}$$















## **MAGiQ** – Evaluation Setup

• Single machine:

2 x 14-core Intel Xeon E5-2680 @ 2.4Gh 512GB NVIDIA Quadro P6000 GPU [Pascal, 24GB GDDR5X]

## **MAGiQ** – Evaluation Setup

- Single machine: 2 x 14-core Intel Xeon E5-2680 @ 2.4Gh
  512GB
  NVIDIA Quadro P6000 GPU [Pascal, 24GB GDDR5X]
- Distributed-memory: Cray XC40



[6,174 Compute Nodes: 12,348 CPUs] 2 x 16-core Intel Xeon E5-2698 @ 2.3 GHz 128GB per Compute Node
## MAGIQ - Datasets

| Dataset        | <b>#Triples (M)</b> | #Nodes (M) | # <b>P</b> |
|----------------|---------------------|------------|------------|
| WatDiv-100M    | 109.23              | 10.28      | 85         |
| YAGO2          | 284.30              | 60.70      | 98         |
| WatDiv-1B      | 1,092.16            | 97.39      | 86         |
| LUBM-1B        | 1,366.71            | 336,51     | 18         |
| <b>Bio2RDF</b> | 4,287.59            | 1,135.93   | 1,714      |
| LUBM-10B       | 10,677.83           | 2,628.99   | 18         |
| LUBM-512B      | 512,527.41          | 126,188.23 | 18         |

# **MAGIQ** – Competing Engines

- Research:
  - **RDF-3X** [VLDB'08] Relational, single machine, serial
  - gStore [VLDB'11] Graph-based, single machine, serial
  - AdPart [VLDBJ'16] Relational, distributed
  - Wukong[OSDI'16] Graph-based, distributed, multithreaded
- Commercial:
  - UrikaGD
  - Virtuoso

- Specialized hardware appliance
- Relational, single machine, multithreaded

# **MAGIQ** – Data-intensive Queries<sup>\*</sup>

#### LUBM-1B (1.3B edges)

|                   |             | Loading time | Dat | ta-intensiv<br>(seco | ve query 1<br>onds) | ime |  |
|-------------------|-------------|--------------|-----|----------------------|---------------------|-----|--|
|                   |             |              | L1  | L2                   | L3                  | L7  |  |
| RDF-3X            | [VLDB'08]   |              | 901 | 116                  | 898                 | 426 |  |
| Wukong            | [OSDI'16]   |              | 11  | 10                   | 11                  | 42  |  |
| MAGiQ(S           | uiteSparse) |              |     |                      |                     |     |  |
| MAGiQ(M           | atlab-CPU)  |              |     |                      |                     |     |  |
| MAGiQ(Matlab-GPU) |             |              |     |                      |                     |     |  |

\*MAGiQ is slower for selective queries

# **MAGIQ** – Data-intensive Queries<sup>\*</sup>

#### LUBM-1B (1.3B edges)

|         |             | Loading time | Dai | ta-intensiv<br>(seco |     |     |  |
|---------|-------------|--------------|-----|----------------------|-----|-----|--|
|         |             | (minutes)    | L1  | L2                   | L3  | L7  |  |
| RDF-3X  | [VLDB'08]   | 447          | 901 | 116                  | 898 | 426 |  |
| Wukong  | [OSDI'16]   | 57           | 11  | 10                   | 11  | 42  |  |
| MAGiQ(S | uiteSparse) | 16           |     |                      |     |     |  |
| MAGiQ(M | atlab-CPU)  | 16           |     |                      |     |     |  |
| MAGiQ(M | atlab-GPU)  | 16           |     |                      |     |     |  |

\*MAGiQ is slower for selective queries

## **MAGIQ** – Data-intensive Queries<sup>\*</sup>

#### LUBM-1B (1.3B edges)

|         |             | Loading time | Dat | a-intensiv<br>(seco | Query time<br>GeoMean |     |           |          |
|---------|-------------|--------------|-----|---------------------|-----------------------|-----|-----------|----------|
|         |             | (minutes)    | L1  | L2                  | L3                    | L7  | (seconds) |          |
| RDF-3X  | [VLDB'08]   | 447          | 901 | 116                 | 898                   | 426 | 308       | <b>E</b> |
| Wukong  | [OSDI'16]   | 57           | 11  | 10                  | 11                    | 42  | 15        |          |
| MAGiQ(S | uiteSparse) | 16           | 173 | 38                  | 108                   | 155 | 102       | S        |
| MAGiQ(M | atlab-CPU)  | 16           | 25  | 14                  | 6                     | 38  | 17        |          |
| MAGiQ(M | atlab-GPU)  | 16           | 3   | 2                   | 2                     | 5   | 3         |          |

\*MAGiQ is slower for selective queries

## **MAGIQ** – Scalability on Cray XC40 Supercomputer







# Matrix algebra for RDF: it's MAGIQ



## Panos.Kalnis @ KAUST.edu.sa

# Extra slides

## Extra:

- Main limitations:
  - No support for queries with variable predicates.
  - No support property path queries.
  - Slow performance for selective queries compared to index-based engines.

# Extra: Slow for selective queries

LUBM-1B [data-intensive] query times (seconds)

|                     | L1    | L2      | L3    | L7    | GeoMean |
|---------------------|-------|---------|-------|-------|---------|
| RDF-3X              | 901.4 | 115.6   | 898.2 | 426.2 | 307.6   |
| Virtuoso            | 25.0  | 1,268.2 | 11.7  | 308.1 | 103.3   |
| UrikaGD             | 5.8   | 2.4     | 1.9   | 7.0   | 3.7     |
| Wukong              | 11.1  | 10.3    | 10.5  | 42.0  | 15.0    |
| MAGiQ (SuiteSparse) | 173.2 | 38.0    | 107.7 | 155.0 | 102.4   |
| MAGiQ (Matlab-CPU)  | 24.9  | 14.3    | 6.1   | 38.2  | 17.0    |
| MAGiQ (Matlab-GPU)  | 3.2   | 2.1     | 1.5   | 5.4   | 2.7     |



### Cyclic queries





## Query planning



## 13B Triples - Shaheen



- CombBLAS
  - Scales with sqrt(p), where p: number of cores



#### Workload evaluation





### LUBM-10B query times (seconds)

|     |                  | L1   | L2   | L3   | <b>L4</b> | L5   | L6   | L7   |
|-----|------------------|------|------|------|-----------|------|------|------|
|     | AdPart           | 5.12 | 0.12 | 0.24 | 0.07      | 0.08 | 3.51 | 4.84 |
| × . | MAGiQ (CombBLAS) | 3.08 | 0.93 | 0.67 | 1.66      | 0.61 | 1.36 | 3.79 |



## Loading time (minutes)

| Dataset     | RDF-3X | GSTORE | Virtuoso | Wukong | MAGiQ |
|-------------|--------|--------|----------|--------|-------|
| WatDiv-100M | 18     | 40     | 9        | 4      | 1     |
| YAGO2       | 78     | 63     | 50       | 9      | 3     |
| LUBM-1B     | 447    | n/a    | 191      | 57     | 16    |
| Bio2RDF     | n/a    | n/a    | 331      | n/a    | 92    |