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• Big Data, Analytics
• Cloud, Parallel, Distributed, HPC
• Machine Learning, AI
• Visual Computing
• Bio-Informatics
• Cyber-Security 
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Graphs are Everywhere…

…But processing is expensive
• E.g., subgraph isomorphism, NP
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”Big”: CPU vs. Big size



RDF Data
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11 Billion

23 Billion

130 Billion
Image from: https://aws.amazon.com/blogs/apn/exploring-knowledge-graphs-on-amazon-neptune-using-metaphactory/



RDF and SPARQL

< Subject Predicate Object >
James gradFrom MIT
EE subOrgOf MIT
James worksFor CS
CS subOrgOf MIT
Lisa advisor Bill
John advisor Bill

…
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RDF: Set of triples:
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RDF and SPARQL

SPARQL: query language for RDF 
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AdPart: Dynamic Partitioning
• In: VLDB Journal, 2016

• Evaluating SPARQL queries on massive RDF datasets, PVLDB, 2015
• Survey & experimental comparison of distributed SPARQL engines for very large RDF data, PVLDB, 2017
• Query optimizations over decentralized RDF graphs, ICDE, 2017
• Lusail: a system for querying linked data at scale, PVDLB, 2017
• A demonstration of Lusail: Querying linked data at scale, (demo) SIGMOD, 2017
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Classification of RDF systems

Query Single 
Dataset
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Queries
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RDF Engines 
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RDF Engines 

+

Federated RDF 
Engines 
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Engine
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12



Partitioning for Parallel Processing
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AdPart – Dynamic Partitioning 
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AdPart is at least 10x faster

• Specialized for Graphs
• 1000x of CPU cores, TBs of RAM
• NUMA architecture

• Global memory address space
• Specialized network
• Transparent to programmer 15



Spartex: RDF meets Graph Analytics
• In: IEEE Trans. On Parallel and Distributed Systems, 2017
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RDF Analytics: Drug Repositioning

Disease SPARQL 
Query

Graph Engine
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Candidates
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RDF Analytics: Drug Repositioning
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Vertex-Centric Framework: Pregel, …

18



Pregel Example: MAX

12
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SPARTEX: RDF @ Vertex-centric
[Kalnis et al., IEEE-TPDS, 2017]
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SPARTEX syntax (1)
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SPARTEX syntax (2)
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SPARTEX: 10x faster
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MAGiQ: Portability and Scalability
• Demo in PVLDB, 2018

• In: Proc. of EuroSys, 2019 
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Existing Engines and Large Graphs
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• Expensive indices [almost no indices]
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Existing Engines and Data-intensive Queries
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• Slow and difficult to port to different HW
• Distributed – AdPart          [VLDBJ ‘16]
• GPU            – Wukong+G  [ATC ‘18]

[effortlessly portable]
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Our Proposal: MAGiQ
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• Translate graph queries into matrix algebra programs:
• Decouple query evaluation logic from particular HW     [Portability]
• Compact sparse matrix representation of input graphs [Scalability]
• Utilize highly efficient existing matrix algebra libraries      [Efficiency]
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Graphs as Matrices… old news?

28



GraphBLAS

• Represent graphs as sparse matrices
• Define common operations
• Matrix x Vector à BFS

29



MAGiQ – RDF Graph Representation
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Pre-processing  à Matrix operations  à Post-processing
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Pre-processing  à Matrix operations  à Post-processing



Selection as Matrix Multiplication

• S: 1 at row i à select row i from M

31



Generalized Matrix Selection

• Semi-ring with
• isEqual instead of multiplication
• OR instead of addition

32



MAGiQ – Algebraic Operations
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MAGiQ – Algebraic Operations
any(M): reduction with OR

1 1

1
any( (

=

1

1

34



MAGiQ – Algebraic Operations
diag(v): construct diagonal selection matrix
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diag( (
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1

1
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MAGiQ – Query Translation
Single edge translation
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4 SPARQL to Matrix Algebra

In this section, we explain how a conjunctive SPARQL

query is evaluated in MAGiQ. The query graph is first

translated to a matrix algebra program that uses the oper-

ations described in Section 3. The outcome of the matrix

algebra program is a collection of intermediate matrices

that hold the bindings of each pair of variables specified

in a SPARQL query edge. These binding matrices are

then used in the result generation phase to produce the

query results.

4.1 Query Translation

The performance critical part of solving a SPARQL

query is producing its variable bindings. The query trans-

lator in MAGiQ produces matrix algebra programs that

can be executed using a matrix algebra back-end to pro-

duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-

tions.

Binding matrices. A binding matrix denoted by Mv1v2
:

Zn◊n
2

is a sparse binary matrix that stores the bindings of

a SPARQL query edge variables v1 and v2. A value of

one at index (i, j) in Mv1v2
means that i is a binding for

variable v1 and j is a binding for variable v2. Each edge

in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how

to compute the binding matrices for a simple SPARQL

query to illustrate the main idea of query translation.

Consider the following query to be evaluated over the

toy RDF graph in Figure 2.

SELECT ?x ?y WHERE {?x <a> ?y .}

This single edge query asks for all pairs of nodes x and

y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-

tively. This query is translated to one selection operation.

Since no variable bindings are available, the predicate

selection matrix is an identity matrix I multiplied with

predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one

binding matrix Mxy. The multiplication goes as follows:

Mxy =

�

⇥⇥⇥⇥⇤

A B C D E
A a
B a
C a
D a
E a

⌅

⇧⇧⇧⇧⌃

⌥ � ⌦
I�a

⇥

�

⇥⇥⇥⇥⇤

A B C D E
A b a a
B b b
C c
D
E e e

⌅

⇧⇧⇧⇧⌃

⌥ � ⌦
A

Algorithm: QUERY-TRANSLATION

Input: Query graph q(Vq, Eq)

Output: Matrix algebra program: statements s0 . . .sk each with 4

components si.Mout , si.Min1
, si.Min2

, and si.op.

1 Let S = �
2 Let g be the undirected version of q

3 qwalk = DFS-WALK(g) // Forward DFS and backtracking walk

4 for e ⇤ qwalk do

5 Let pe be the edge before e in qwalk
6 Let p be the predicate of edge e

7 (v1, v2, etype) = (e.v1, e.v2, e.type)

8 (w1, w2) = (pe.v1, pe.v2)

9 if pe.type == ’back’ then (w1, w2) = (pe.v2, pe.v1)

10 if e is the first edge in qwalk then

11 (Mout , Min1
, Min2

, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A

⌅

13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2

, op) =

(Mv1v2
, diag(any(Mw1w2

))� p, A, ⇥)

15 if v1 ⇧= w1 then

16 Min1 = diag(any(M⌅
w1w2

))� p

17 if e /⇤ Eq then Min2
= A

⌅

18 else if etype == ’back’ then

19 (Mout , Min1
, Min2

, op) =

(Mv2v1
, Mv2v1

, diag(any(Mw1w2
)), ◊)

20 s = (Mout , Min1
, Min2

, op)

21 S.append(s)

22 return S

and results in:

Mxy =

�

⇥⇥⇥⇥⇤

A B C D E
A 1 1

B
C
D
E

⌅

⇧⇧⇧⇧⌃

The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.

Query graph translation. In a general SPARQL query,

each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge

5

36
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predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one
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Algorithm: QUERY-TRANSLATION

Input: Query graph q(Vq, Eq)

Output: Matrix algebra program: statements s0 . . .sk each with 4

components si.Mout , si.Min1
, si.Min2

, and si.op.
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2 Let g be the undirected version of q

3 qwalk = DFS-WALK(g) // Forward DFS and backtracking walk
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5 Let pe be the edge before e in qwalk
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11 (Mout , Min1
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, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A
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13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2
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(Mv1v2
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The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.

Query graph translation. In a general SPARQL query,

each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge
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In this section, we explain how a conjunctive SPARQL

query is evaluated in MAGiQ. The query graph is first

translated to a matrix algebra program that uses the oper-

ations described in Section 3. The outcome of the matrix

algebra program is a collection of intermediate matrices

that hold the bindings of each pair of variables specified

in a SPARQL query edge. These binding matrices are

then used in the result generation phase to produce the

query results.

4.1 Query Translation

The performance critical part of solving a SPARQL

query is producing its variable bindings. The query trans-

lator in MAGiQ produces matrix algebra programs that

can be executed using a matrix algebra back-end to pro-

duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-

tions.

Binding matrices. A binding matrix denoted by Mv1v2
:

Zn◊n
2

is a sparse binary matrix that stores the bindings of

a SPARQL query edge variables v1 and v2. A value of

one at index (i, j) in Mv1v2
means that i is a binding for

variable v1 and j is a binding for variable v2. Each edge

in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how

to compute the binding matrices for a simple SPARQL

query to illustrate the main idea of query translation.

Consider the following query to be evaluated over the

toy RDF graph in Figure 2.

SELECT ?x ?y WHERE {?x <a> ?y .}

This single edge query asks for all pairs of nodes x and

y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-

tively. This query is translated to one selection operation.

Since no variable bindings are available, the predicate

selection matrix is an identity matrix I multiplied with

predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one

binding matrix Mxy. The multiplication goes as follows:
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)), which reduces the columns of
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by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3
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puted as follows:
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ations described in Section 3. The outcome of the matrix

algebra program is a collection of intermediate matrices

that hold the bindings of each pair of variables specified

in a SPARQL query edge. These binding matrices are

then used in the result generation phase to produce the

query results.

4.1 Query Translation

The performance critical part of solving a SPARQL

query is producing its variable bindings. The query trans-

lator in MAGiQ produces matrix algebra programs that

can be executed using a matrix algebra back-end to pro-

duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-

tions.

Binding matrices. A binding matrix denoted by Mv1v2
:
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is a sparse binary matrix that stores the bindings of

a SPARQL query edge variables v1 and v2. A value of

one at index (i, j) in Mv1v2
means that i is a binding for

variable v1 and j is a binding for variable v2. Each edge

in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how

to compute the binding matrices for a simple SPARQL

query to illustrate the main idea of query translation.

Consider the following query to be evaluated over the

toy RDF graph in Figure 2.

SELECT ?x ?y WHERE {?x <a> ?y .}

This single edge query asks for all pairs of nodes x and

y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-

tively. This query is translated to one selection operation.

Since no variable bindings are available, the predicate

selection matrix is an identity matrix I multiplied with

predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one

binding matrix Mxy. The multiplication goes as follows:
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Algorithm: QUERY-TRANSLATION

Input: Query graph q(Vq, Eq)

Output: Matrix algebra program: statements s0 . . .sk each with 4

components si.Mout , si.Min1
, si.Min2

, and si.op.

1 Let S = �
2 Let g be the undirected version of q

3 qwalk = DFS-WALK(g) // Forward DFS and backtracking walk

4 for e ⇤ qwalk do

5 Let pe be the edge before e in qwalk
6 Let p be the predicate of edge e

7 (v1, v2, etype) = (e.v1, e.v2, e.type)

8 (w1, w2) = (pe.v1, pe.v2)

9 if pe.type == ’back’ then (w1, w2) = (pe.v2, pe.v1)

10 if e is the first edge in qwalk then

11 (Mout , Min1
, Min2

, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A
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13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2

, op) =

(Mv1v2
, diag(any(Mw1w2

))� p, A, ⇥)

15 if v1 ⇧= w1 then

16 Min1 = diag(any(M⌅
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17 if e /⇤ Eq then Min2
= A
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18 else if etype == ’back’ then

19 (Mout , Min1
, Min2

, op) =

(Mv2v1
, Mv2v1

, diag(any(Mw1w2
)), ◊)

20 s = (Mout , Min1
, Min2
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21 S.append(s)

22 return S

and results in:
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The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.

Query graph translation. In a general SPARQL query,

each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge
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query is evaluated in MAGiQ. The query graph is first

translated to a matrix algebra program that uses the oper-

ations described in Section 3. The outcome of the matrix

algebra program is a collection of intermediate matrices

that hold the bindings of each pair of variables specified

in a SPARQL query edge. These binding matrices are

then used in the result generation phase to produce the

query results.

4.1 Query Translation

The performance critical part of solving a SPARQL

query is producing its variable bindings. The query trans-

lator in MAGiQ produces matrix algebra programs that

can be executed using a matrix algebra back-end to pro-

duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-

tions.

Binding matrices. A binding matrix denoted by Mv1v2
:

Zn◊n
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is a sparse binary matrix that stores the bindings of

a SPARQL query edge variables v1 and v2. A value of

one at index (i, j) in Mv1v2
means that i is a binding for

variable v1 and j is a binding for variable v2. Each edge

in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how

to compute the binding matrices for a simple SPARQL

query to illustrate the main idea of query translation.

Consider the following query to be evaluated over the

toy RDF graph in Figure 2.

SELECT ?x ?y WHERE {?x <a> ?y .}

This single edge query asks for all pairs of nodes x and

y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-

tively. This query is translated to one selection operation.

Since no variable bindings are available, the predicate

selection matrix is an identity matrix I multiplied with

predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one

binding matrix Mxy. The multiplication goes as follows:
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Algorithm: QUERY-TRANSLATION

Input: Query graph q(Vq, Eq)

Output: Matrix algebra program: statements s0 . . .sk each with 4

components si.Mout , si.Min1
, si.Min2

, and si.op.

1 Let S = �
2 Let g be the undirected version of q

3 qwalk = DFS-WALK(g) // Forward DFS and backtracking walk

4 for e ⇤ qwalk do

5 Let pe be the edge before e in qwalk
6 Let p be the predicate of edge e

7 (v1, v2, etype) = (e.v1, e.v2, e.type)

8 (w1, w2) = (pe.v1, pe.v2)

9 if pe.type == ’back’ then (w1, w2) = (pe.v2, pe.v1)

10 if e is the first edge in qwalk then

11 (Mout , Min1
, Min2

, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A

⌅

13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2

, op) =

(Mv1v2
, diag(any(Mw1w2

))� p, A, ⇥)

15 if v1 ⇧= w1 then

16 Min1 = diag(any(M⌅
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))� p

17 if e /⇤ Eq then Min2
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18 else if etype == ’back’ then

19 (Mout , Min1
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, op) =

(Mv2v1
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, diag(any(Mw1w2
)), ◊)

20 s = (Mout , Min1
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22 return S

and results in:
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The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.

Query graph translation. In a general SPARQL query,

each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge
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query is producing its variable bindings. The query trans-
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duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-
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in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how
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y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-
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lator in MAGiQ produces matrix algebra programs that

can be executed using a matrix algebra back-end to pro-

duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-

tions.

Binding matrices. A binding matrix denoted by Mv1v2
:
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is a sparse binary matrix that stores the bindings of

a SPARQL query edge variables v1 and v2. A value of

one at index (i, j) in Mv1v2
means that i is a binding for

variable v1 and j is a binding for variable v2. Each edge

in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how

to compute the binding matrices for a simple SPARQL

query to illustrate the main idea of query translation.

Consider the following query to be evaluated over the

toy RDF graph in Figure 2.

SELECT ?x ?y WHERE {?x <a> ?y .}

This single edge query asks for all pairs of nodes x and

y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-

tively. This query is translated to one selection operation.

Since no variable bindings are available, the predicate

selection matrix is an identity matrix I multiplied with

predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one
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Algorithm: QUERY-TRANSLATION

Input: Query graph q(Vq, Eq)

Output: Matrix algebra program: statements s0 . . .sk each with 4

components si.Mout , si.Min1
, si.Min2

, and si.op.
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6 Let p be the predicate of edge e
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11 (Mout , Min1
, Min2

, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A

⌅

13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2

, op) =

(Mv1v2
, diag(any(Mw1w2

))� p, A, ⇥)

15 if v1 ⇧= w1 then

16 Min1 = diag(any(M⌅
w1w2

))� p
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The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.

Query graph translation. In a general SPARQL query,

each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge
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)), which reduces the columns of
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by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
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that hold the bindings of each pair of variables specified

in a SPARQL query edge. These binding matrices are

then used in the result generation phase to produce the
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lator in MAGiQ produces matrix algebra programs that

can be executed using a matrix algebra back-end to pro-

duce variable bindings. We explain in this section the

query translation and the needed concepts and defini-

tions.

Binding matrices. A binding matrix denoted by Mv1v2
:
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is a sparse binary matrix that stores the bindings of

a SPARQL query edge variables v1 and v2. A value of

one at index (i, j) in Mv1v2
means that i is a binding for

variable v1 and j is a binding for variable v2. Each edge

in a query needs a binding matrix to store its variables’

bindings.

Single edge query translation. Below we show how

to compute the binding matrices for a simple SPARQL

query to illustrate the main idea of query translation.

Consider the following query to be evaluated over the

toy RDF graph in Figure 2.

SELECT ?x ?y WHERE {?x <a> ?y .}

This single edge query asks for all pairs of nodes x and

y with an a labelled edge from x to y. Such node pairs

constitute the valid bindings of variables x and y, respec-

tively. This query is translated to one selection operation.

Since no variable bindings are available, the predicate

selection matrix is an identity matrix I multiplied with

predicate a (i.e., S = I�a). This query translates to:

Mxy = I�a⇥A

The variable bindings in this query are stored in one

binding matrix Mxy. The multiplication goes as follows:

Mxy =

�

⇥⇥⇥⇥⇤

A B C D E
A a
B a
C a
D a
E a

⌅

⇧⇧⇧⇧⌃

⌥ � ⌦
I�a

⇥

�

⇥⇥⇥⇥⇤

A B C D E
A b a a
B b b
C c
D
E e e

⌅

⇧⇧⇧⇧⌃

⌥ � ⌦
A

Algorithm: QUERY-TRANSLATION

Input: Query graph q(Vq, Eq)

Output: Matrix algebra program: statements s0 . . .sk each with 4

components si.Mout , si.Min1
, si.Min2

, and si.op.

1 Let S = �
2 Let g be the undirected version of q

3 qwalk = DFS-WALK(g) // Forward DFS and backtracking walk

4 for e ⇤ qwalk do

5 Let pe be the edge before e in qwalk
6 Let p be the predicate of edge e

7 (v1, v2, etype) = (e.v1, e.v2, e.type)

8 (w1, w2) = (pe.v1, pe.v2)

9 if pe.type == ’back’ then (w1, w2) = (pe.v2, pe.v1)

10 if e is the first edge in qwalk then

11 (Mout , Min1
, Min2

, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A
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13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2

, op) =

(Mv1v2
, diag(any(Mw1w2

))� p, A, ⇥)

15 if v1 ⇧= w1 then

16 Min1 = diag(any(M⌅
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))� p

17 if e /⇤ Eq then Min2
= A
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18 else if etype == ’back’ then

19 (Mout , Min1
, Min2

, op) =

(Mv2v1
, Mv2v1

, diag(any(Mw1w2
)), ◊)

20 s = (Mout , Min1
, Min2
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22 return S

and results in:
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The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.

Query graph translation. In a general SPARQL query,

each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge
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Query graph translation. In a general SPARQL query,
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)), which reduces the columns of
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by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-
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Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.
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9 if pe.type == ’back’ then (w1, w2) = (pe.v2, pe.v1)

10 if e is the first edge in qwalk then

11 (Mout , Min1
, Min2

, op) = (Mv1v2
, I� p, A, ⇥)

12 if e /⇤ Eq then Min2
= A

⌅

13 else if etype == ’forward’ then

14 (Mout , Min1
, Min2

, op) =

(Mv1v2
, diag(any(Mw1w2

))� p, A, ⇥)

15 if v1 ⇧= w1 then

16 Min1 = diag(any(M⌅
w1w2

))� p

17 if e /⇤ Eq then Min2
= A

⌅

18 else if etype == ’back’ then

19 (Mout , Min1
, Min2

, op) =

(Mv2v1
, Mv2v1

, diag(any(Mw1w2
)), ◊)

20 s = (Mout , Min1
, Min2

, op)

21 S.append(s)

22 return S

and results in:

Mxy =

�

⇥⇥⇥⇥⇤

A B C D E
A 1 1

B
C
D
E

⌅

⇧⇧⇧⇧⌃

The bindings of x and y are: (x,y) ⇤ {(A,C),(A,E)}.
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each edge is translated to a selection operation. The bind-

ings of a variable constrain the bindings of the next con-

nected variable. Given a binding matrix of variables v1

and v2, Mv1v2
, the bindings of variable v2 can be con-

verted to a selection matrix by the following operation:

Sv2
= diag(any(M⌅

v1v2
)), which reduces the columns of

Mv1v2
by doing a transposition and a LOR reduction us-

ing any(M⌅
xy) and places the resulting vector from the re-

duction on the diagonal of an empty matrix using diag.

Now that we have the valid bindings of variable v2, we

can get the valid bindings of variables connected to v2.

Suppose the query had another edge involving v2 and v3

with predicate pv2v3
. The binding matrix Mv2v3

is com-

puted as follows:

Mv2v3
= Sv2

� pv2v3
⇥A

The bindings of v2 and v3 in Mv2v3
capture all the edges

processed so far; the edge involving (v1,v2) and the edge
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Figure 2: Example RDF graph (left), and corresponding
RDF sparse matrix (right).

The specific data structure used to store A is out of the
scope of this paper. The choice is left to the matrix al-
gebra back-end. However, it is worth noting at this point
that space efficient data structures are available, such as
the compressed sparse column (CSC) [25] and the dou-
bly compressed sparse column (DCSC) [23]. CSC con-
sumes O(n+nnz(M)), where n and nnz(M) are the num-
ber of nodes and edges in the graph represented by the
sparse matrix M. DCSC is a more recent data struc-
ture with a reduced storage complexity of O(nnz(M)).
The linear storage complexity in the number of edges,
enables us to support very large RDF graphs.

2.2 Workflow

Similar to most RDF engines [37, 17, 29, 14, 13],
MAGiQ starts by loading the input RDF graph, encod-
ing its strings into numerical IDs and building a bi-
directional dictionary. Then, MAGiQ represents the en-
coded graph as a sparse square matrix.

MAGiQ gets as input a SPARQL query which is
passed to the query translation module. The query com-
piler translates SPARQL queries to matrix algebra pro-
grams. The optimizer takes advantage of matrix algebra
properties to re-order the operations in a way that pro-
duces more efficient programs.

Once a matrix algebra program is available, an ex-
isting sparse matrix algebra engine can be used to
evaluate the query over different hardware architec-
tures. For example, one can use MATLAB for CPU
and GPU, SuiteSparse:GraphBLAS [8] or MKL [4] for
CPU, CuSPARSE [6] for GPUs, or CombBLAS [22]
for distributed-memory systems. MAGiQ’s API Bridge
maps the intermediate matrix algebra program into the
corresponding back-end syntax; the concept is similar to
the ODBC/JDBC drivers in databases. The matrix al-
gebra back-end gets as input both the graph matrix and
the query’s matrix algebra program. It performs a set of
matrix operations that generate a set of binding matrices
containing the matches of the different query variables.
Finally, the resulting binding matrices are passed as in-
put to a result generation phase that constructs the final
query answer.

Example: Consider the example SPARQL query in Fig-

SELECT ?x ?y ?z ?w WHERE {

?x <a> ?y .

?y <c> ?z .

?x <b> ?w .

}

Figure 3: Example SPARQL query (left), and its graph
representation (right).

ure 3. The query is translated to the following matrix al-
gebra program, where query edges are processed in the
following order: �?x, a, ?y⇥, �?y, c, ?z⇥ and �?x, b, ?w⇥:

Mxy = I⇤a⌅A

Myz = diag(any(M⇧
xy
))⇤ c⌅A

Mxy = Mxy ◊diag(any(Myz))

Mxw = diag(any(Mxy))⇤b⌅A

The ⌅ symbol denotes matrix multiplication over a
semiring (see Section 3). We explain query translation
in Section 4.1. The example program above works as
follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of
z. The third line updates Mxy to eliminate bindings in-
validated by predicate c. Finally, the fourth line uses the
bindings of x in Mxy with predicate b to select the valid
bindings of w.

3 Matrix Algebra Constructs

This section introduces the matrix algebra constructs
which serve as the main building blocks in MAGiQ’s
query translator. These constructs are oblivious to any
specific implementation; the underlying data structures
and algorithms used to realize them vary across differ-
ent back-ends. Specific implementations are described
in Section 5.

3.1 Selection Operation in RDF Matrices

Row/column selection A selection matrix is a diagonal
matrix with ones on diagonal entries at row/column in-
dices to be selected. When a selection matrix is mul-
tiplied with a matrix of the same size, the product is a
matrix with the specified rows/columns present. The or-
der of the multiplication determines whether it is a row or
column selection. Placing the selection matrix at the left
side of the multiplication results in row selection, while
placing the selection matrix on the right side of the mul-
tiplication results in column selection. We refer to the
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The specific data structure used to store A is out of the
scope of this paper. The choice is left to the matrix al-
gebra back-end. However, it is worth noting at this point
that space efficient data structures are available, such as
the compressed sparse column (CSC) [25] and the dou-
bly compressed sparse column (DCSC) [23]. CSC con-
sumes O(n+nnz(M)), where n and nnz(M) are the num-
ber of nodes and edges in the graph represented by the
sparse matrix M. DCSC is a more recent data struc-
ture with a reduced storage complexity of O(nnz(M)).
The linear storage complexity in the number of edges,
enables us to support very large RDF graphs.

2.2 Workflow

Similar to most RDF engines [37, 17, 29, 14, 13],
MAGiQ starts by loading the input RDF graph, encod-
ing its strings into numerical IDs and building a bi-
directional dictionary. Then, MAGiQ represents the en-
coded graph as a sparse square matrix.

MAGiQ gets as input a SPARQL query which is
passed to the query translation module. The query com-
piler translates SPARQL queries to matrix algebra pro-
grams. The optimizer takes advantage of matrix algebra
properties to re-order the operations in a way that pro-
duces more efficient programs.

Once a matrix algebra program is available, an ex-
isting sparse matrix algebra engine can be used to
evaluate the query over different hardware architec-
tures. For example, one can use MATLAB for CPU
and GPU, SuiteSparse:GraphBLAS [8] or MKL [4] for
CPU, CuSPARSE [6] for GPUs, or CombBLAS [22]
for distributed-memory systems. MAGiQ’s API Bridge
maps the intermediate matrix algebra program into the
corresponding back-end syntax; the concept is similar to
the ODBC/JDBC drivers in databases. The matrix al-
gebra back-end gets as input both the graph matrix and
the query’s matrix algebra program. It performs a set of
matrix operations that generate a set of binding matrices
containing the matches of the different query variables.
Finally, the resulting binding matrices are passed as in-
put to a result generation phase that constructs the final
query answer.

Example: Consider the example SPARQL query in Fig-

SELECT ?x ?y ?z ?w WHERE {
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}

Figure 3: Example SPARQL query (left), and its graph
representation (right).

ure 3. The query is translated to the following matrix al-
gebra program, where query edges are processed in the
following order: �?x, a, ?y⇥, �?y, c, ?z⇥ and �?x, b, ?w⇥:

Mxy = I⇤a⌅A

Myz = diag(any(M⇧
xy
))⇤ c⌅A

Mxy = Mxy ◊diag(any(Myz))

Mxw = diag(any(Mxy))⇤b⌅A

The ⌅ symbol denotes matrix multiplication over a
semiring (see Section 3). We explain query translation
in Section 4.1. The example program above works as
follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of
z. The third line updates Mxy to eliminate bindings in-
validated by predicate c. Finally, the fourth line uses the
bindings of x in Mxy with predicate b to select the valid
bindings of w.

3 Matrix Algebra Constructs

This section introduces the matrix algebra constructs
which serve as the main building blocks in MAGiQ’s
query translator. These constructs are oblivious to any
specific implementation; the underlying data structures
and algorithms used to realize them vary across differ-
ent back-ends. Specific implementations are described
in Section 5.

3.1 Selection Operation in RDF Matrices

Row/column selection A selection matrix is a diagonal
matrix with ones on diagonal entries at row/column in-
dices to be selected. When a selection matrix is mul-
tiplied with a matrix of the same size, the product is a
matrix with the specified rows/columns present. The or-
der of the multiplication determines whether it is a row or
column selection. Placing the selection matrix at the left
side of the multiplication results in row selection, while
placing the selection matrix on the right side of the mul-
tiplication results in column selection. We refer to the
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The specific data structure used to store A is out of the
scope of this paper. The choice is left to the matrix al-
gebra back-end. However, it is worth noting at this point
that space efficient data structures are available, such as
the compressed sparse column (CSC) [25] and the dou-
bly compressed sparse column (DCSC) [23]. CSC con-
sumes O(n+nnz(M)), where n and nnz(M) are the num-
ber of nodes and edges in the graph represented by the
sparse matrix M. DCSC is a more recent data struc-
ture with a reduced storage complexity of O(nnz(M)).
The linear storage complexity in the number of edges,
enables us to support very large RDF graphs.

2.2 Workflow

Similar to most RDF engines [37, 17, 29, 14, 13],
MAGiQ starts by loading the input RDF graph, encod-
ing its strings into numerical IDs and building a bi-
directional dictionary. Then, MAGiQ represents the en-
coded graph as a sparse square matrix.

MAGiQ gets as input a SPARQL query which is
passed to the query translation module. The query com-
piler translates SPARQL queries to matrix algebra pro-
grams. The optimizer takes advantage of matrix algebra
properties to re-order the operations in a way that pro-
duces more efficient programs.

Once a matrix algebra program is available, an ex-
isting sparse matrix algebra engine can be used to
evaluate the query over different hardware architec-
tures. For example, one can use MATLAB for CPU
and GPU, SuiteSparse:GraphBLAS [8] or MKL [4] for
CPU, CuSPARSE [6] for GPUs, or CombBLAS [22]
for distributed-memory systems. MAGiQ’s API Bridge
maps the intermediate matrix algebra program into the
corresponding back-end syntax; the concept is similar to
the ODBC/JDBC drivers in databases. The matrix al-
gebra back-end gets as input both the graph matrix and
the query’s matrix algebra program. It performs a set of
matrix operations that generate a set of binding matrices
containing the matches of the different query variables.
Finally, the resulting binding matrices are passed as in-
put to a result generation phase that constructs the final
query answer.

Example: Consider the example SPARQL query in Fig-

SELECT ?x ?y ?z ?w WHERE {
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?y <c> ?z .
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}

Figure 3: Example SPARQL query (left), and its graph
representation (right).
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gebra program, where query edges are processed in the
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Mxy = Mxy ◊diag(any(Myz))

Mxw = diag(any(Mxy))⇤b⌅A

The ⌅ symbol denotes matrix multiplication over a
semiring (see Section 3). We explain query translation
in Section 4.1. The example program above works as
follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of
z. The third line updates Mxy to eliminate bindings in-
validated by predicate c. Finally, the fourth line uses the
bindings of x in Mxy with predicate b to select the valid
bindings of w.

3 Matrix Algebra Constructs

This section introduces the matrix algebra constructs
which serve as the main building blocks in MAGiQ’s
query translator. These constructs are oblivious to any
specific implementation; the underlying data structures
and algorithms used to realize them vary across differ-
ent back-ends. Specific implementations are described
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3.1 Selection Operation in RDF Matrices

Row/column selection A selection matrix is a diagonal
matrix with ones on diagonal entries at row/column in-
dices to be selected. When a selection matrix is mul-
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matrix with the specified rows/columns present. The or-
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side of the multiplication results in row selection, while
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The specific data structure used to store A is out of the
scope of this paper. The choice is left to the matrix al-
gebra back-end. However, it is worth noting at this point
that space efficient data structures are available, such as
the compressed sparse column (CSC) [25] and the dou-
bly compressed sparse column (DCSC) [23]. CSC con-
sumes O(n+nnz(M)), where n and nnz(M) are the num-
ber of nodes and edges in the graph represented by the
sparse matrix M. DCSC is a more recent data struc-
ture with a reduced storage complexity of O(nnz(M)).
The linear storage complexity in the number of edges,
enables us to support very large RDF graphs.

2.2 Workflow

Similar to most RDF engines [37, 17, 29, 14, 13],
MAGiQ starts by loading the input RDF graph, encod-
ing its strings into numerical IDs and building a bi-
directional dictionary. Then, MAGiQ represents the en-
coded graph as a sparse square matrix.

MAGiQ gets as input a SPARQL query which is
passed to the query translation module. The query com-
piler translates SPARQL queries to matrix algebra pro-
grams. The optimizer takes advantage of matrix algebra
properties to re-order the operations in a way that pro-
duces more efficient programs.

Once a matrix algebra program is available, an ex-
isting sparse matrix algebra engine can be used to
evaluate the query over different hardware architec-
tures. For example, one can use MATLAB for CPU
and GPU, SuiteSparse:GraphBLAS [8] or MKL [4] for
CPU, CuSPARSE [6] for GPUs, or CombBLAS [22]
for distributed-memory systems. MAGiQ’s API Bridge
maps the intermediate matrix algebra program into the
corresponding back-end syntax; the concept is similar to
the ODBC/JDBC drivers in databases. The matrix al-
gebra back-end gets as input both the graph matrix and
the query’s matrix algebra program. It performs a set of
matrix operations that generate a set of binding matrices
containing the matches of the different query variables.
Finally, the resulting binding matrices are passed as in-
put to a result generation phase that constructs the final
query answer.

Example: Consider the example SPARQL query in Fig-

SELECT ?x ?y ?z ?w WHERE {
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The ⌅ symbol denotes matrix multiplication over a
semiring (see Section 3). We explain query translation
in Section 4.1. The example program above works as
follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of
z. The third line updates Mxy to eliminate bindings in-
validated by predicate c. Finally, the fourth line uses the
bindings of x in Mxy with predicate b to select the valid
bindings of w.

3 Matrix Algebra Constructs

This section introduces the matrix algebra constructs
which serve as the main building blocks in MAGiQ’s
query translator. These constructs are oblivious to any
specific implementation; the underlying data structures
and algorithms used to realize them vary across differ-
ent back-ends. Specific implementations are described
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matrix with ones on diagonal entries at row/column in-
dices to be selected. When a selection matrix is mul-
tiplied with a matrix of the same size, the product is a
matrix with the specified rows/columns present. The or-
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The specific data structure used to store A is out of the
scope of this paper. The choice is left to the matrix al-
gebra back-end. However, it is worth noting at this point
that space efficient data structures are available, such as
the compressed sparse column (CSC) [25] and the dou-
bly compressed sparse column (DCSC) [23]. CSC con-
sumes O(n+nnz(M)), where n and nnz(M) are the num-
ber of nodes and edges in the graph represented by the
sparse matrix M. DCSC is a more recent data struc-
ture with a reduced storage complexity of O(nnz(M)).
The linear storage complexity in the number of edges,
enables us to support very large RDF graphs.

2.2 Workflow
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ing its strings into numerical IDs and building a bi-
directional dictionary. Then, MAGiQ represents the en-
coded graph as a sparse square matrix.

MAGiQ gets as input a SPARQL query which is
passed to the query translation module. The query com-
piler translates SPARQL queries to matrix algebra pro-
grams. The optimizer takes advantage of matrix algebra
properties to re-order the operations in a way that pro-
duces more efficient programs.

Once a matrix algebra program is available, an ex-
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evaluate the query over different hardware architec-
tures. For example, one can use MATLAB for CPU
and GPU, SuiteSparse:GraphBLAS [8] or MKL [4] for
CPU, CuSPARSE [6] for GPUs, or CombBLAS [22]
for distributed-memory systems. MAGiQ’s API Bridge
maps the intermediate matrix algebra program into the
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gebra back-end gets as input both the graph matrix and
the query’s matrix algebra program. It performs a set of
matrix operations that generate a set of binding matrices
containing the matches of the different query variables.
Finally, the resulting binding matrices are passed as in-
put to a result generation phase that constructs the final
query answer.
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The ⌅ symbol denotes matrix multiplication over a
semiring (see Section 3). We explain query translation
in Section 4.1. The example program above works as
follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of
z. The third line updates Mxy to eliminate bindings in-
validated by predicate c. Finally, the fourth line uses the
bindings of x in Mxy with predicate b to select the valid
bindings of w.
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This section introduces the matrix algebra constructs
which serve as the main building blocks in MAGiQ’s
query translator. These constructs are oblivious to any
specific implementation; the underlying data structures
and algorithms used to realize them vary across differ-
ent back-ends. Specific implementations are described
in Section 5.

3.1 Selection Operation in RDF Matrices

Row/column selection A selection matrix is a diagonal
matrix with ones on diagonal entries at row/column in-
dices to be selected. When a selection matrix is mul-
tiplied with a matrix of the same size, the product is a
matrix with the specified rows/columns present. The or-
der of the multiplication determines whether it is a row or
column selection. Placing the selection matrix at the left
side of the multiplication results in row selection, while
placing the selection matrix on the right side of the mul-
tiplication results in column selection. We refer to the
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The specific data structure used to store A is out of the
scope of this paper. The choice is left to the matrix al-
gebra back-end. However, it is worth noting at this point
that space efficient data structures are available, such as
the compressed sparse column (CSC) [25] and the dou-
bly compressed sparse column (DCSC) [23]. CSC con-
sumes O(n+nnz(M)), where n and nnz(M) are the num-
ber of nodes and edges in the graph represented by the
sparse matrix M. DCSC is a more recent data struc-
ture with a reduced storage complexity of O(nnz(M)).
The linear storage complexity in the number of edges,
enables us to support very large RDF graphs.

2.2 Workflow

Similar to most RDF engines [37, 17, 29, 14, 13],
MAGiQ starts by loading the input RDF graph, encod-
ing its strings into numerical IDs and building a bi-
directional dictionary. Then, MAGiQ represents the en-
coded graph as a sparse square matrix.

MAGiQ gets as input a SPARQL query which is
passed to the query translation module. The query com-
piler translates SPARQL queries to matrix algebra pro-
grams. The optimizer takes advantage of matrix algebra
properties to re-order the operations in a way that pro-
duces more efficient programs.

Once a matrix algebra program is available, an ex-
isting sparse matrix algebra engine can be used to
evaluate the query over different hardware architec-
tures. For example, one can use MATLAB for CPU
and GPU, SuiteSparse:GraphBLAS [8] or MKL [4] for
CPU, CuSPARSE [6] for GPUs, or CombBLAS [22]
for distributed-memory systems. MAGiQ’s API Bridge
maps the intermediate matrix algebra program into the
corresponding back-end syntax; the concept is similar to
the ODBC/JDBC drivers in databases. The matrix al-
gebra back-end gets as input both the graph matrix and
the query’s matrix algebra program. It performs a set of
matrix operations that generate a set of binding matrices
containing the matches of the different query variables.
Finally, the resulting binding matrices are passed as in-
put to a result generation phase that constructs the final
query answer.

Example: Consider the example SPARQL query in Fig-

SELECT ?x ?y ?z ?w WHERE {

?x <a> ?y .

?y <c> ?z .

?x <b> ?w .

}

Figure 3: Example SPARQL query (left), and its graph
representation (right).

ure 3. The query is translated to the following matrix al-
gebra program, where query edges are processed in the
following order: �?x, a, ?y⇥, �?y, c, ?z⇥ and �?x, b, ?w⇥:

Mxy = I⇤a⌅A

Myz = diag(any(M⇧
xy
))⇤ c⌅A

Mxy = Mxy ◊diag(any(Myz))

Mxw = diag(any(Mxy))⇤b⌅A

The ⌅ symbol denotes matrix multiplication over a
semiring (see Section 3). We explain query translation
in Section 4.1. The example program above works as
follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of
z. The third line updates Mxy to eliminate bindings in-
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bindings of x in Mxy with predicate b to select the valid
bindings of w.
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► Hardware oblivious 
► As scalable and efficient as the back-end library



MAGiQ – Evaluation Setup
• Single machine:        2 x 14-core Intel Xeon E5-2680 @ 2.4Gh

512GB
NVIDIA Quadro P6000 GPU [Pascal, 24GB GDDR5X]
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MAGiQ – Evaluation Setup
• Single machine:        2 x 14-core Intel Xeon E5-2680 @ 2.4Gh

512GB
NVIDIA Quadro P6000 GPU [Pascal, 24GB GDDR5X]

• Distributed-memory: Cray XC40

[6,174 Compute Nodes: 12,348 CPUs]
2 x 16-core Intel Xeon E5-2698 @ 2.3 GHz
128GB per Compute Node
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MAGiQ – DatasetsTable 2. Datasets statistics in millions (M). #P is the number
of unique predicates in a dataset.

Dataset #Triples (M) #Nodes (M) #P
WatDiv-100M 109.23 10.28 85
YAGO2 284.30 60.70 98
WatDiv-1B 1,092.16 97.39 86
LUBM-1B 1,366.71 336,51 18
Bio2RDF 4,287.59 1,135.93 1,714
LUBM-10B 10,677.83 2,628.99 18
LUBM-512B 512,527.41 126,188.23 18

and Bio2RDF [2] with 284 million and 4.3 billion triples, re-
spectively. Datasets with less than 10 billion triples are used
in single machine experiments; the larger ones are used in
distributed-memory experiments.
MAGiQ prototypes. We evaluate four versions of
MAGiQ with di�erent back-end libraries; SuiteS-
parse:GraphBLAS, M�����-CPU, M�����-GPU and
CombBLAS. MAGiQ (SuiteSparse) uses the SuiteS-
parse:GraphBLAS [8] implementation of GraphBLAS and
runs on a single CPU thread. MAGiQ (M�����-CPU)
and MAGiQ (M�����-GPU) are built on top of M���
���. MAGiQ (M�����-GPU) uses multiple CPU threads
while MAGiQ (M�����-GPU) uses a single GPU. Finally,
MAGiQ (CombBLAS) uses CombBLAS [22], which employs
MPI in distributed-memory environment.
Competitors. We compare against a variety of state-of-the-
art and established systems in our experiments, including
relational, graph-based and specialized graph processing
hardware.

RDF�3X [39]: Relational engine that creates exhaustive in-
dices to accelerate its join-based query processor. Even
though this is a relatively old system, it holds the record
for some queries compared to state-of-the-art engines.

�S���� [50]: Graph-based engine that evaluates SPARQL
queries using e�cient subgraph matching algorithms.

U����GD [9]: A data analytics appliance by Cray, which
consists of a graph-optimized hardwarewith 2TB of global
shared-memory and 64 Threadstorm processors with 128
hardware threads per processor, and provides a SPARQL
query engine.

V������� [28]: An enterprise grade solution built on top of
a hybrid row/column-oriented DBMS. This system scales
to very large graphs using a single machine.

W�����4 [42]: State-of-the-art engine that runs e�ciently
on a single machine (using multi-threading) and on
RDMA-enabled distributed-memorymachines. It employs
several query planning and graph exploration techniques
to achieve good performance for many queries.

A�P��� [30]: State-of-the-art distributed-memory RDF
query engine. It implements a query optimizer that
exploits the query structure and hash-based data locality

Table 3. Loading times (minutes); n/a: failed to load within
24 hours or crashed while loading.

Dataset

RD
F�
3X

�S
��

��

V�
��

��
��

W
��

��
�5

M
A
G
iQ

WatDiv-100M 18 40 9 4 1
YAGO2 78 63 50 9 3
LUBM-1B 447 n/a 191 57 16
Bio2RDF n/a n/a 331 n/a 92

to produce query execution plans with minimal commu-
nication. This system was shown to outperform several
distributed-memory systems in a recent study [13].

RDF�3X and �S���� use disk to store indices, so we mount
their indices in memory for fairness. The query times re-
ported for each system are averaged over 5 runs to account
for randomness and noise.

7.1 Single Machine Experiments
7.1.1 Data Loading
Table 3 shows the time needed by each system to load the in-
put RDF dataset; it includes the time to collect statistics,
construct various indices and perform any required pre-
processing before answering queries. All existing systems
require signi�cant loading times. V������� is the only com-
peting system that was able to load all datasets successfully.
MAGiQ is considerably faster. For example, for the LUBM-1B
dataset, V������� needs more than 3 hours, while MAGiQ
loads the data in 16 minutes. MAGiQ loads the input datasets
faster than all competitors (3x to 28x faster) because it does
not build explicit indices; its loading time is dominated by
the time to read the graph from the disk.

7.1.2 Query Evaluation

LUBM-1B dataset.We use the same 7 queries6 used in most
of the RDF literature [13, 29, 30, 42, 49, 50]. LUBM queries
can be classi�ed into simple and complex, based on the struc-
ture of the query and the number of intermediate and �nal
results. L4 and L5 are simple star queries that generate few
intermediate and �nal results. L6 is a very selective simple
query. L2 is a star query, however, it is a reporting query that
generates a large number of intermediate and �nal results.
L1, L3, and L7 are 6-hop queries with many intermediate
results. We refer to computationally light queries (i.e., L4,
L5, and L6) as simple queries, and to computationally heavy
queries (i.e., L1, L2, L3, and L7) as complex queries.
4The authors of this system also developed a GPU assisted version;
Wukong+G [45]. However, its source code is not available yet, so we were
not able to use the GPU assisted version in our experiments.
5W����� failed to load YAGO2 dataset initially because this dataset has
labels that appear as subjects/objects and predicates, which is not supported
in W�����. We �ltered out triples containing such labels from YAGO2
with the help of the authors of W����� to enable loading.
6The LUBM benchmark contains other queries that involve inferencing,
which is out of the scope of our paper.
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MAGiQ – Competing Engines
• Research: 
• RDF-3X [VLDB’08]  – Relational, single machine, serial
• gStore [VLDB’11]  – Graph-based, single machine, serial
• AdPart [VLDBJ’16]– Relational, distributed
• Wukong[OSDI’16]  – Graph-based, distributed, multithreaded

•Commercial:
• UrikaGD – Specialized hardware appliance
• Virtuoso – Relational, single machine, multithreaded
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Loading time
(minutes)

Data-intensive query time
(seconds)

Query time
GeoMean
(seconds)L1 L2 L3 L7

RDF-3X [VLDB’08] 447 901 116 898 426 308

Wukong [OSDI’16] 57 11 10 11 42 15

MAGiQ(SuiteSparse) 16 173 38 108 155 102

MAGiQ(Matlab-CPU) 16 25 14 6 38 17

MAGiQ(Matlab-GPU) 16 3 2 2 5 3

LUBM-1B (1.3B edges)

*MAGiQ is slower for selective queries

MAGiQ – Data-intensive Queries*
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Figure 7. Scalability of MAGiQ: (a) Data scalability on a single machine. (b) Strong scalability on a supercomputer using
LUBM-10B. (c) Data scalability on a supercomputer using 2,048 compute nodes.

(20x faster than A�P���). MAGiQ (CombBLAS) reads the
graph once in parallel and distributes it across the available
compute nodes. A�P��� graph partitioning utility reads the
input dataset serially and splits it into one �le per compute
core, then A�P��� query engine loads all the �les in parallel.
The bottleneck of A�P��� is the initial serial graph read,
which takes most of the loading time.

Table 9. Runtimes for LUBM-10B queries (sec).
L1 L2 L3 L4 L5 L6 L7

A�P��� 5.12 0.12 0.24 0.07 0.08 3.51 4.84
MAGiQ (CombBLAS) 3.08 0.93 0.67 1.66 0.61 1.36 3.79

Table 9 shows runtimes for LUBM-10B queries L1-L7. For
queries L2-L5, A�P��� is faster because it was able to do the
evaluation without communication, which was enabled by
its data distribution mechanism and locality-aware query
planning. For queries L1, L6 and L7, A�P��� is slower be-
cause it was not able to do communication-free evaluation.
MAGiQ (CombBLAS) inherits its e�cient communication
from CombBLAS, and thus scales to many compute nodes.

7.2.2 Scalability
Figure 7b shows the runtime of MAGiQ (CombBLAS) for
queries L1-L7 on dataset LUBM-10B as we increase the num-
ber of compute nodes from 64 to 1,024. CombBLAS has an
ideal speedup p

p [23], where p is the number of CPU cores.
Consequently, the ideal speed of MAGiQ (CombBLAS) is ex-
pected to have ispp, so we quadruple the number of compute
nodes at each step in Figure 7b similarly to [23].
Figure 7c shows the runtimes for queries L1-L7 on 2,048

compute nodes as we increase the dataset size from 64 to 512
billion triples; the increase of runtime is almost linear at such
a large scale, which suggests that MAGiQ (CombBLAS) is
suitable for querying very large datasets. We used the LUBM
benchmark to generate the datasets used in this experiment.

7.3 Discussion and Limitations
While MAGiQ provides competitive performance for com-
plex queries, it is evident in our experimental evaluation
that the main limitation is its poor performance on simple

queries. Such queries bene�t from building exhaustive in-
dices because their evaluation involves selecting very small
parts of the input dataset without requiring heavy computa-
tions. Consequently, parallelism does not help accelerating
such queries. Specialized systems such as Wukong [42] and
RDF-3X [39] solve such queries in milliseconds, whereas
MAGiQ requires seconds.

In summary, MAGiQ trades o� simple query performance
for: (i) portability over a variety of infrastructures; (ii) good
performance for complex queries; (iii) scalability to very
large datasets and computing infrastructures; (iv) reduced
memory footprint; and (v) fast loading time.

8 Related work
Specialized RDF Engines. Many research e�orts focus on
building e�cient centralized RDF engines [13, 17, 31, 39, 40,
47, 50]. RDF-3X [39] and HexaStore [46] are relational RDF
engines that create exhaustive indices to accelerate their
join-based query processor. Openlink Virtuoso [28], an en-
terprise grade solution, is a SPARQL engine built on top of
a hybrid row/column-oriented DBMS. TripleBit [47] uses
compact sorted indices and performs merge-joins for query
evaluation. BitMat [17] uses a compressed 3-dimensional
bit-matrix for storing RDF graphs and performs joins on the
compressed representation for query evaluation without ma-
terializing intermediate join results. gStore [50] utilizes the
graph storage model to store RDF data and solves SPARQL
queries using e�cient subgraph matching algorithms. Many
distributed RDF engines [13, 14, 29, 30, 36, 41, 42, 45, 49] have
also been proposed recently. These systems can be classi�ed
into (i) systems built on top of a general purpose data or
graph processing system like MapReduce [25], Spark [48] or
Pregel [37], and (ii) systems speci�cally built for SPARQL
query execution. Such systems use native RDF indices, ef-
�cient communication frameworks and customized query
optimizations to minimize query runtime. All the above men-
tioned systems are designedwith a particular hardware archi-
tecture in mind. Therefore, adapting these engines to run ef-
fectively on a di�erent architecture; e.g., GPUs, entails almost
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Matrix algebra for RDF: it’s MAGIQ
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Extra:
•Main limitations:
• No support for queries with variable predicates.
• No support property path queries.
• Slow performance for selective queries compared to 

index-based engines.
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Extra: Slow for selective queries
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LUBM-1B [data-intensive] query times (seconds)Table 4. Runtimes for complex queries on LUBM-1B (sec).
L1 L2 L3 L7 GeoMean

RDF�3X 901.4 115.6 898.2 426.2 307.6
V������� 25.0 1,268.2 11.7 308.1 103.3
U����GD 5.8 2.4 1.9 7.0 3.7
W����� 11.1 10.3 10.5 42.0 15.0
MAGiQ (SuiteSparse) 173.2 38.0 107.7 155.0 102.4
MAGiQ (M�����-CPU) 24.9 14.3 6.1 38.2 17.0
MAGiQ (M�����-GPU) 3.2 2.1 1.5 5.4 2.7

Table 4 shows the runtimes of complex queries for LUBM-
1B dataset. In the case of complex queries that touch large
portions of the input dataset, MAGiQ performs well com-
pared to the highly optimized existing systems. Particu-
larly, ourM�����-GPU implementation outperforms special-
ized systems by up to two orders of magnitude (compared
to RDF�3X) and is at least 1.4x faster (compared to U����
�GD). Compared to the state-of-the-art system W�����,
MAGiQ (M�����-GPU) is 5.6x faster on average, while
MAGiQ (M�����-CPU) is 1.13x slower. Note that our ma-
trix algebra based GPU implementation achieves a speedup
up to 7.8x compared to W�����. This is comparable to the
speedups achieved by a specialized state-of-the-art GPU sys-
tem; Wukong+G [45], which achieves up to 9x speedup com-
pared to W�����.
Table 5 shows the runtimes of simple queries for LUBM-

1B dataset. Simple queries touch a small portion of the data;
therefore the indices of RDF�3X, V�������, and W�����
are bene�cial.W����� is by far the fastest system for this
category of queries with a geometric mean of 1.3ms com-
pared to 31ms for the second fastest system RDF�3X. Even
though MAGiQ (M�����-GPU) has a geometric mean of
less than a second, MAGiQ is not a good choice for solving
simple queries compared toW����� and RDF�3X. However,
the fastest systemW����� used 312GB of memory to load
the LUBM-1B dataset, while MAGiQ used 26GB only.

Table 5. Runtimes for simple queries on LUBM-1B (msec).
L4 L5 L6 GeoMean

RDF�3X 17 10 181 31
V������� 1,941 32 42 137
U����GD 1,442 720 1,588 1,181
W����� 1.9 0.3 1 1.3
MAGiQ (SuiteSparse) 55,167 32,737 68,927 49,931
MAGiQ (M�����-CPU) 4,892 1,095 2,571 2,397
MAGiQ (M�����-GPU) 2,337 610 698 998

YAGO2 dataset. Since YAGO2 is a real dataset with no
benchmark queries, we used the same set of queries (Y1-
Y4) de�ned in [13, 30]. Y1 and Y2 are selective queries that
result in small number of results, while Y3 and Y4 are com-
plex queries that consist of non-selective object-object joins.
Table 6 shows the runtimes for all compared systems. The
conclusions are similar to those of LUBM-1B dataset; MAGiQ
provides competitive performance compared to specialized
engines for complex queries.

Table 6. Runtimes for YAGO2 queries (msec). Y1 and Y2 are
simple queries, whereas Y3 and Y4 are complex.

Y1 Y2 Y3 Y4 Geo.
Mean

RDF�3X 51 234,600 9,800 112 1,904
�S���� 274 136 8,473 1,053 758
V������� 537 21 9,136 16 202
U����GD 1,864 1,649 1,523 1,415 1,604
W�����7 4 5 172 758 38
MAGiQ (SuiteSparse) 26,069 33,139 17,331 21,551 23,834
MAGiQ (M�����-CPU) 118 122 246 111 141
MAGiQ (M�����-GPU) 54 66 105 40 62

WatDiv-100M dataset. The WatDiv benchmark de�nes 20
query templates [11] classi�ed into four categories: linear (L),
star (S), snow�ake (F) and complex queries (C). Similar to [29,
30]; we create 20 queries of each query category. Table 7
shows the runtimes; for each query class, we report the
runtime geometric mean for each engine. RDF�3X performs
best for star (S) queries, while W����� achieves the best
performance for other query categories. For complex (C)
queries, both MAGiQ (M�����-GPU) and MAGiQ (M�����-
CPU) are signi�cantly faster than all other systems; 3x to
10x faster, except forW�����.W����� performs well on
WatDiv benchmark because the high selectivity of its queries
enables its graph exploration engine to touch only small
portions of the data [42].

Table 7. Runtimes (GeoMean) for WatDiv-100M queries
(msec).

S1-S7 F1-F5 L1-L5 C1-C3
RDF�3X 11 32 11 813
�S���� 139 187 230 1,154
V������� 22 30 20 1,213
U����GD 1,264 1,330 1,743 2,357
W����� 16 2 1 47
MAGiQ (SuiteSparse) 1,028 2,168 790 5,393
MAGiQ (M�����-CPU) 25 44 16 234
MAGiQ (M�����-GPU) 26 48 16 195

Bio2RDF dataset. We use the same Bio2RDF queries (B1-
B5), extracted from a real query log, as in [30]. B1 contains
two triple patterns that require object-object join. B2 and B3
are star queries with di�erent number of triple patterns. B4 is
a complex query with 2-hop radius while B5 is a simple star
query with only one triple pattern. We show the runtimes
in Table 8. V������� and U����GD achieve better perfor-
mance than MAGiQ for star queries (i.e., B2 and B3). How-
ever, MAGiQ (M�����-GPU) and MAGiQ (M�����-CPU)

7Reported results are those for optimal query plans manually generated by
the authors of the engine. Feeding the original queries directly to W�����
results in a signi�cantly slower performance because W����� does not
support automatic query planning for datasets with a large number of
unique predicates like YAGO2 and real datasets in general. The authors
informed us that they are currently working on automatic query planning
for such datasets in an email correspondence.
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Figure 5. Cyclic query example: (a) Input query. (b) DFS
process; red and green denote DFS tree and back edges, re-
spectively. (c) Acyclic query;w is a shadow variable of x .

Queries with constants. A constant l in an edge implies
selecting nodes connected to node l in the RDF graph, or
equivalently selecting a speci�c row or column from A. Con-
stants are handled as follows. If the constant is the �rst node
in the �rst edge inqwalk , the selection matrix I⇤p is replaced
with diag(one(l)) ⇤ p. Otherwise, A (or A0) is replaced with
A ⇥ diag(one(l)) (or A0 ⇥ diag(one(l)), respectively) when
the edge involving the constant is processed.
Queries with variable predicates. Some SPARQL queries
contain triple patterns with variable predicates. If each vari-
able predicate’s name appears in a single triple pattern in
the query, several small changes are needed to support such
queries in MAGiQ. The main change is replacing iseq in
our LOR.iseq semiring with an operator that returns the
second operand if both operands are non-zeros and returns
zero otherwise. In the general case when the same predicate
variable appears in multiple triple patterns in the query (i.e.,
the query requires joins involving predicates), non-trivial
changes are required to support those queries in MAGiQ. It
is worth noting that queries with variable predicates are not
commonly encountered in real SPARQL queries as con�rmed
in several studies of real SPARQL query logs [22, 34]. We
defer supporting variable predicates to our future work.

4.3 Query Optimization
The query evaluation time in MAGiQ depends mainly on
the e�ciency of the matrix algebra back-end. However, for
a given query, di�erent equivalent matrix algebra programs
can result in di�erent runtimes. One factor that contributes
to the e�ciency of a query program, regardless of the back-
end, is the number of non-zeros in binding matrices. Some
binding matrices may become as dense as the matrix of the
input graph. During processing, some may become sparser
after a back edge removes invalidated bindings. Di�erent
orders of processing the query edges can result in programs
with varying e�ciency.

The selection of the starting node in Algorithm DFS�����
controls the order of processing query edges. Since query
optimization is not the focus of this paper, we follow a simple
query planning strategy where we start with the edge that
involves a constant, in the hope that such an edge is selective
and that the resulting binding matrices remain sparse while
evaluating the query. We show in Section 7.1.4 that the query
evaluation program produced by this simple strategy often

picks either the fastest possible plan, or close to it. We defer
more involved optimization approaches to our future work.
MAGiQ uses a simple optimization for cyclic queries to

take into account the fact that two (or more) nodes represent
the same query variable (i.e., original variable and its shadow
variables). Recall from Section 4.1 that back edges result in
�ltering out bindings from already computed binding ma-
trices. We use the same idea to �lter out invalid bindings of
a query variable that has shadow variables. This optimiza-
tion reduces the number of non-zeroes in the intermediate
binding matrices and leads to faster result generation.

MAGiQ also takes into account the storage format of the
sparse matrix in the back-end library. For libraries with
column major data structures such as compressed sparse
columns, column selection operations are faster and should
be used instead of row selection where possible. This can
be done by computing the transpose of a binding matrix,
instead of the binding matrix itself. Consider row selection
operationM = S⌦A; the transposeM0 equals A0 ⌦ S0. Since
S is a square diagonal matrix, it is equal to its transpose.
Thus, statementM0 = A0 ⌦ S is used where possible when
the back-end uses column major format.

5 Main Computation - Implementation
We present three case studies with di�erent back-end matrix
algebra libraries: SuiteSparse, M�����, and CombBLAS. We
map the domain-speci�c language ofMAGiQ to the functions
of the back-end library by implementing the API bridge of
Figure 1. Additional libraries can be easily supported by
implementing the corresponding API bridge.
MAGiQ (SuiteSparse). We use the SuiteSparse [8] im-
plementation of the GraphBLAS [3] standard. Graph-
BLAS o�ers GrB_Matrix and GrB_Vector data types
for storing matrices and vectors. RDF graph construc-
tion is done with GrB_Matrix_build, which constructs
a GrB_Matrix from hrowIndex, columnIndex, valuei tuples.
Since this library supports the GraphBLAS standard, map-
ping our operations is straightforward. ⇥ and ⌦ map to
GrB_mxm with a GxB_PLUS_TIMES and GxB_LOR_EQ semir-
ings, respectively. Scalar multiplication and diag map
to calls to GrB_Matrix_setElement in GrB_NONBLOCKING
mode, which avoids reconstructing the matrix upon
each call. any maps to GrB_Matrix_reduce_Monoid with
GxB_LOR_BOOL_MONOID binary operator. Operation one
maps to GrB_Vector_setElement. Transposing a matrix
maps to GrB_transpose. Since this library uses column ma-
jor storage format (as of version 1.1.0), columns in a matrix
are stored contiguously in memory; consequently, column se-
lection operations are much faster. MAGiQ adjusts the query
evaluation programs for this library such that row selection
operations are replaced with column selection operations.
The RDF matrix and its transpose are stored to avoid the
redundant computation of A0.
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Figure 7. Query plan selection for LUBM-1B. MAGiQ’s op-
timizer selects plans close to the optimal.

our optimizer selects a plan that is either optimal in the
search space or has performance very close to the fastest
execution plan. This is also observed for MAGiQ (M�����-
GPU) (Figure 7b).

7.1.5 Data Scalability
In this experiment, we show how the performance of our
M����� implementations change as we increase the dataset
size. We generated 5 datasets ranging from 85 million triples
to 1.3 billion triples using the LUBM benchmark. Figure 8a
shows the geometric mean of runtimes for queries L1-L7,
for each dataset size. As shown, the geometric mean of both
CPU and GPU implementations increases slowly with the
dataset size.

7.2 Distributed-Memory Experiments
7.2.1 Data Loading and Query Evaluation
We show in this section the performance of MAGiQ (Comb-
BLAS) compared to the performance of the state-of-the-art
distributed-memory engine A�P��� using the LUBM-10B
dataset. Both engines were deployed on our Cray XC40 su-
percomputer using 1,024 compute nodes.
A�P��� took a total of 57.13 minutes to load the graph,

while MAGiQ (CombBLAS) took a total of 2.75 minutes (20x
faster than A�P���). MAGiQ (CombBLAS) reads the graph
once in parallel and distributes it across the available com-
pute nodes.A�P��� graph partitioning utility reads the input
dataset serially and splits it into one �le per compute core,
then A�P��� query engine loads all the �les in parallel. The
bottleneck of A�P��� is the initial serial graph read, which
takes most of the loading time.

Table 9 shows the runtimes for LUBM-10B queries L1-L7.
For queries L2-L5, A�P��� is faster because it was able to do
the evaluation without communication, which was enabled
by its data distribution mechanism and locality-aware query
planning. For queries L1, L6, and L7, A�P��� is slower be-
cause it was not able to do communication-free evaluation.
MAGiQ (CombBLAS) inherits its e�cient communication
from CombBLAS, and thus scales to a large number of com-
pute nodes.

Table 9. Runtimes for LUBM-10B queries (sec).
L1 L2 L3 L4 L5 L6 L7

A�P��� 5.12 0.12 0.24 0.07 0.08 3.51 4.84
MAGiQ (CombBLAS) 3.08 0.93 0.67 1.66 0.61 1.36 3.79

7.2.2 Scalability
Figure 8b shows the runtimes of MAGiQ (CombBLAS) for
queries L1-L7 on dataset LUBM-10B as we increase the num-
ber of compute nodes from 64 to 1,024. CombBLAS has an
ideal speedup p

p [25], where p is the number of CPU cores.
Consequently, the ideal speedup MAGiQ (CombBLAS) is ex-
pected to have ispp, so we quadruple the number of compute
nodes at each step in Figure 8b similarly to [25].
Figure 8c shows the runtimes for queries L1-L7 on 2,048

compute nodes as we increase the dataset size from 64 to 512
billion triples. The increase of runtime is almost linear at such
a large scale, which suggests that MAGiQ (CombBLAS) is
suitable for querying very large datasets. We used the LUBM
benchmark to generate the datasets used in this experiment.

7.3 Discussion and Limitations
While MAGiQ provides competitive performance for data-
intensive queries, it is evident in our experimental evaluation
that the main limitation is its poor performance for selective
queries. Such queries bene�t from building exhaustive in-
dices because their evaluation involves selecting very small
parts of the input dataset without requiring heavy computa-
tions. Consequently, parallelism does not help accelerating
such queries. Specialized engines such as Wukong [49] and
RDF-3X [46] solve such queries in milliseconds, whereas
MAGiQ needs seconds.
In summary, MAGiQ trades o� selective query perfor-

mance for: (i) portability over a variety of infrastructures; (ii)
good performance for data-intensive queries; (iii) scalability
to very large datasets and computing infrastructures; (iv)
reduced memory footprint; and (v) fast loading time.

8 Related work
Specialized SPARQL engines. Many research e�orts fo-
cus on building e�cient centralized SPARQL query en-
gines [18, 37, 46, 47, 53, 54, 57]. TripleBit [54] uses com-
pact sorted indices and performs merge-joins for query eval-
uation. BitMat [18] uses a compressed 3-dimensional bit-
matrix for storing RDF graphs and performs joins on the
compressed representation for query evaluation without
materializing intermediate join results. Many distributed
engines [13, 14, 35, 36, 43, 48, 49, 52, 56] have also been pro-
posed recently. These engines can be classi�ed into: (i) en-
gines built on top of a general purpose data or graph process-
ing system like MapReduce [30], Spark [55], or Pregel [44];
and (ii) engines speci�cally built for SPARQL query evalua-
tion. Such engines use native RDF indices, e�cient communi-
cation frameworks, and customized query optimization. All
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Table 6. Runtimes for YAGO2 queries (msec).

Y1 Y2 Y3 Y4 Geo.
Mean

RDF�3X 51 234,600 9,800 112 1,904
�S���� 274 136 8,473 1,053 758
V������� 537 21 9,136 16 202
U����GD 1,864 1,649 1,523 1,415 1,604
W�����10 4 5 172 758 38
MAGiQ (SuiteSparse) 26,069 33,139 17,331 21,551 23,834
MAGiQ (M�����-CPU) 118 122 246 111 141
MAGiQ (M�����-GPU) 54 66 105 40 62

Table 7. Runtimes (GeoMean) for WatDiv-100M queries
(msec).

S1-S7 F1-F5 L1-L5 C1-C3
RDF�3X 11 32 11 813
�S���� 139 187 230 1,154
V������� 22 30 20 1,213
U����GD 1,264 1,330 1,743 2,357
W����� 16 2 1 47
MAGiQ (SuiteSparse) 1,028 2,168 790 5,393
MAGiQ (M�����-CPU) 25 44 16 234
MAGiQ (M�����-GPU) 26 48 16 195

Table 8. Runtimes for Bio2RDF queries (msec).

B1 B2 B3 B4 B5 Geo.
Mean

V������� 588 941 1,656 298 198 382
U����GD 879 798 1,832 1,180 947 1,075
MAGiQ (M�����-CPU) 658 2,674 7,052 54 8 351
MAGiQ (M�����-GPU) 232 1,111 2,740 186 10 265

Bio2RDF dataset. We used the same Bio2RDF queries (B1-
B5), extracted from a real query log, as in [36]. B1 con-
tains two triple patterns that require object-object join. B2
and B3 are star queries with di�erent number of triple pat-
terns. B4 has a 2-hop radius while B5 is a very selective
star query with only one triple pattern. We show the run-
times in Table 8. V������� and U����GD achieve better
performance than MAGiQ for star queries (B2 and B3). How-
ever, MAGiQ (M�����-GPU) and MAGiQ (M�����-CPU)
are faster for the rest of the queries. The intermediate bind-
ing matrices of B4 are small, resulting in MAGiQ (M�����-
CPU) being more e�cient than MAGiQ (M�����-GPU).
For B5, the cost of copying the predicate matrices to the
GPU and fetching the binding matrices back to the CPU
is not amortized due to the high selectivity of the query.
Therefore, MAGiQ (M�����-CPU) performs better than
MAGiQ (M�����-GPU). However, the geometric mean of
MAGiQ (M�����-GPU) is lower than all other engines.

10Reported results are those for optimal query plans manually generated by
the authors of the engine. Feeding the original queries directly to W�����
results in signi�cantly slower performance because W����� does not
support automatic query planning for datasets with a large number of
unique predicates like YAGO2.
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Figure 6. Breakdown of MAGiQ runtime when evaluating
10K and 20K query workloads for LUBM-1B and WatDiv-1B,
respectively. Query translation took two seconds. Binding
matrices generation is the dominant performance factor.

7.1.3 Query Workload Evaluation
We show in this experiment a breakdown of MAGiQ’s run-
time for workloads of queries. Two workloads are used in
this experiment: 10,000 LUBM benchmark queries on the
LUBM-1B dataset and 20,000 WatDiv benchmark queries
on the WatDiv-1B dataset. These workloads were de�ned
by the state-of-the-art distributed-memory workload-aware
SPARQL query engine [36]. Runtimes are shown for the
following steps: pre-processing (i.e., graph loading), main
program execution (i.e., bindingmatrices computation), copy-
ing data to GPU memory (for the GPU implementation), and
post-processing (i.e., result generation).

Figure 6 shows the results for the M�����-CPU and M���
���-GPU implementations. MAGiQ took less than two sec-
onds for translating all the 10K LUBM and the 20K WatDiv
queries. For MAGiQ (M�����-CPU), loading the graph and
generating the results incurs insigni�cant overhead; the dom-
inant factor is the query evaluation program execution. This
shows that the performance critical part is the main query
program execution, which is a�ected mainly by the back-end
implementation of the matrix algebra operations. Similar ob-
servations can be made when running these two workloads
using MAGiQ (M�����-GPU). For the WatDiv-1B workload,
the main query program execution dominates the execution
time. However, copying LUBM-1B matrices to the GPU took
more time compared to WatDiv-1B since LUBM has fewer
predicates and more dense predicate matrices.

7.1.4 E�ect of Query Planning
In this experiment, we evaluate the e�ciency of our query
optimizer. We evaluated the LUBM data-intensive queries
L1, L3, and L7 using M�����-CPU and M�����-GPU; we
executed all possible plans for each query. Figure 7 shows
the fastest and slowest execution times over all plans. It
also compares them with the execution time for the plan
selected by MAGiQ. For MAGiQ (M�����-CPU) (Figure 7a),
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Figure 7. Query plan selection for LUBM-1B. MAGiQ’s op-
timizer selects plans close to the optimal.

our optimizer selects a plan that is either optimal in the
search space or has performance very close to the fastest
execution plan. This is also observed for MAGiQ (M�����-
GPU) (Figure 7b).

7.1.5 Data Scalability
In this experiment, we show how the performance of our
M����� implementations change as we increase the dataset
size. We generated 5 datasets ranging from 85 million triples
to 1.3 billion triples using the LUBM benchmark. Figure 8a
shows the geometric mean of runtimes for queries L1-L7,
for each dataset size. As shown, the geometric mean of both
CPU and GPU implementations increases slowly with the
dataset size.

7.2 Distributed-Memory Experiments
7.2.1 Data Loading and Query Evaluation
We show in this section the performance of MAGiQ (Comb-
BLAS) compared to the performance of the state-of-the-art
distributed-memory engine A�P��� using the LUBM-10B
dataset. Both engines were deployed on our Cray XC40 su-
percomputer using 1,024 compute nodes.
A�P��� took a total of 57.13 minutes to load the graph,

while MAGiQ (CombBLAS) took a total of 2.75 minutes (20x
faster than A�P���). MAGiQ (CombBLAS) reads the graph
once in parallel and distributes it across the available com-
pute nodes.A�P��� graph partitioning utility reads the input
dataset serially and splits it into one �le per compute core,
then A�P��� query engine loads all the �les in parallel. The
bottleneck of A�P��� is the initial serial graph read, which
takes most of the loading time.

Table 9 shows the runtimes for LUBM-10B queries L1-L7.
For queries L2-L5, A�P��� is faster because it was able to do
the evaluation without communication, which was enabled
by its data distribution mechanism and locality-aware query
planning. For queries L1, L6, and L7, A�P��� is slower be-
cause it was not able to do communication-free evaluation.
MAGiQ (CombBLAS) inherits its e�cient communication
from CombBLAS, and thus scales to a large number of com-
pute nodes.

Table 9. Runtimes for LUBM-10B queries (sec).
L1 L2 L3 L4 L5 L6 L7

A�P��� 5.12 0.12 0.24 0.07 0.08 3.51 4.84
MAGiQ (CombBLAS) 3.08 0.93 0.67 1.66 0.61 1.36 3.79

7.2.2 Scalability
Figure 8b shows the runtimes of MAGiQ (CombBLAS) for
queries L1-L7 on dataset LUBM-10B as we increase the num-
ber of compute nodes from 64 to 1,024. CombBLAS has an
ideal speedup p

p [25], where p is the number of CPU cores.
Consequently, the ideal speedup MAGiQ (CombBLAS) is ex-
pected to have ispp, so we quadruple the number of compute
nodes at each step in Figure 8b similarly to [25].
Figure 8c shows the runtimes for queries L1-L7 on 2,048

compute nodes as we increase the dataset size from 64 to 512
billion triples. The increase of runtime is almost linear at such
a large scale, which suggests that MAGiQ (CombBLAS) is
suitable for querying very large datasets. We used the LUBM
benchmark to generate the datasets used in this experiment.

7.3 Discussion and Limitations
While MAGiQ provides competitive performance for data-
intensive queries, it is evident in our experimental evaluation
that the main limitation is its poor performance for selective
queries. Such queries bene�t from building exhaustive in-
dices because their evaluation involves selecting very small
parts of the input dataset without requiring heavy computa-
tions. Consequently, parallelism does not help accelerating
such queries. Specialized engines such as Wukong [49] and
RDF-3X [46] solve such queries in milliseconds, whereas
MAGiQ needs seconds.
In summary, MAGiQ trades o� selective query perfor-

mance for: (i) portability over a variety of infrastructures; (ii)
good performance for data-intensive queries; (iii) scalability
to very large datasets and computing infrastructures; (iv)
reduced memory footprint; and (v) fast loading time.

8 Related work
Specialized SPARQL engines. Many research e�orts fo-
cus on building e�cient centralized SPARQL query en-
gines [18, 37, 46, 47, 53, 54, 57]. TripleBit [54] uses com-
pact sorted indices and performs merge-joins for query eval-
uation. BitMat [18] uses a compressed 3-dimensional bit-
matrix for storing RDF graphs and performs joins on the
compressed representation for query evaluation without
materializing intermediate join results. Many distributed
engines [13, 14, 35, 36, 43, 48, 49, 52, 56] have also been pro-
posed recently. These engines can be classi�ed into: (i) en-
gines built on top of a general purpose data or graph process-
ing system like MapReduce [30], Spark [55], or Pregel [44];
and (ii) engines speci�cally built for SPARQL query evalua-
tion. Such engines use native RDF indices, e�cient communi-
cation frameworks, and customized query optimization. All
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Loading time (minutes)Table 2. Datasets statistics in millions (M). #P is the number
of unique predicates in a dataset.

Dataset #Triples (M) #Nodes (M) #P
WatDiv-100M 109.23 10.28 85
YAGO2 284.30 60.70 98
WatDiv-1B 1,092.16 97.39 86
LUBM-1B 1,366.71 336,51 18
Bio2RDF 4,287.59 1,135.93 1,714
LUBM-10B 10,677.83 2,628.99 18
LUBM-512B 512,527.41 126,188.23 18

and Bio2RDF [2] with 284 million and 4.3 billion triples, re-
spectively. Datasets with less than 10 billion triples are used
in single machine experiments; the larger ones are used in
distributed-memory experiments.
MAGiQ prototypes. We evaluate four versions of
MAGiQ with di�erent back-end libraries; SuiteS-
parse:GraphBLAS, M�����-CPU, M�����-GPU and
CombBLAS. MAGiQ (SuiteSparse) uses the SuiteS-
parse:GraphBLAS [8] implementation of GraphBLAS and
runs on a single CPU thread. MAGiQ (M�����-CPU)
and MAGiQ (M�����-GPU) are built on top of M���
���. MAGiQ (M�����-GPU) uses multiple CPU threads
while MAGiQ (M�����-GPU) uses a single GPU. Finally,
MAGiQ (CombBLAS) uses CombBLAS [22], which employs
MPI in distributed-memory environment.
Competitors. We compare against a variety of state-of-the-
art and established systems in our experiments, including
relational, graph-based and specialized graph processing
hardware.

RDF�3X [39]: Relational engine that creates exhaustive in-
dices to accelerate its join-based query processor. Even
though this is a relatively old system, it holds the record
for some queries compared to state-of-the-art engines.

�S���� [50]: Graph-based engine that evaluates SPARQL
queries using e�cient subgraph matching algorithms.

U����GD [9]: A data analytics appliance by Cray, which
consists of a graph-optimized hardwarewith 2TB of global
shared-memory and 64 Threadstorm processors with 128
hardware threads per processor, and provides a SPARQL
query engine.

V������� [28]: An enterprise grade solution built on top of
a hybrid row/column-oriented DBMS. This system scales
to very large graphs using a single machine.

W�����4 [42]: State-of-the-art engine that runs e�ciently
on a single machine (using multi-threading) and on
RDMA-enabled distributed-memorymachines. It employs
several query planning and graph exploration techniques
to achieve good performance for many queries.

A�P��� [30]: State-of-the-art distributed-memory RDF
query engine. It implements a query optimizer that
exploits the query structure and hash-based data locality

Table 3. Loading times (minutes); n/a: failed to load within
24 hours or crashed while loading.

Dataset

RD
F�
3X

�S
��

��

V�
��

��
��

W
��

��
�5

M
A
G
iQ

WatDiv-100M 18 40 9 4 1
YAGO2 78 63 50 9 3
LUBM-1B 447 n/a 191 57 16
Bio2RDF n/a n/a 331 n/a 92

to produce query execution plans with minimal commu-
nication. This system was shown to outperform several
distributed-memory systems in a recent study [13].

RDF�3X and �S���� use disk to store indices, so we mount
their indices in memory for fairness. The query times re-
ported for each system are averaged over 5 runs to account
for randomness and noise.

7.1 Single Machine Experiments
7.1.1 Data Loading
Table 3 shows the time needed by each system to load the in-
put RDF dataset; it includes the time to collect statistics,
construct various indices and perform any required pre-
processing before answering queries. All existing systems
require signi�cant loading times. V������� is the only com-
peting system that was able to load all datasets successfully.
MAGiQ is considerably faster. For example, for the LUBM-1B
dataset, V������� needs more than 3 hours, while MAGiQ
loads the data in 16 minutes. MAGiQ loads the input datasets
faster than all competitors (3x to 28x faster) because it does
not build explicit indices; its loading time is dominated by
the time to read the graph from the disk.

7.1.2 Query Evaluation

LUBM-1B dataset.We use the same 7 queries6 used in most
of the RDF literature [13, 29, 30, 42, 49, 50]. LUBM queries
can be classi�ed into simple and complex, based on the struc-
ture of the query and the number of intermediate and �nal
results. L4 and L5 are simple star queries that generate few
intermediate and �nal results. L6 is a very selective simple
query. L2 is a star query, however, it is a reporting query that
generates a large number of intermediate and �nal results.
L1, L3, and L7 are 6-hop queries with many intermediate
results. We refer to computationally light queries (i.e., L4,
L5, and L6) as simple queries, and to computationally heavy
queries (i.e., L1, L2, L3, and L7) as complex queries.
4The authors of this system also developed a GPU assisted version;
Wukong+G [45]. However, its source code is not available yet, so we were
not able to use the GPU assisted version in our experiments.
5W����� failed to load YAGO2 dataset initially because this dataset has
labels that appear as subjects/objects and predicates, which is not supported
in W�����. We �ltered out triples containing such labels from YAGO2
with the help of the authors of W����� to enable loading.
6The LUBM benchmark contains other queries that involve inferencing,
which is out of the scope of our paper.
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