
Big Mobility Data Analytics:
Algorithms and Techniques for
Efficient Trajectory Clustering

Department of Informatics

School of Information and Communication Technologies

University of Piraeus

A thesis submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy by

Panagiotis Tampakis

Piraeus, October 2019





Big Mobility Data Analytics:
Algorithms and Techniques for
Efficient Trajectory Clustering

A thesis submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

in the Department of Informatics
of the School of Information and Communication Technologies

at the University of Piraeus
By

Panagiotis Tampakis

Supervising Committee
Yannis Theodoridis Nikos Pelekis Christos Doulkeridis
University of Piraeus University of Piraeus University of Piraeus

Approved by
Date:..........................................................................

........................... ........................... ...........................
Yannis Theodoridis

Professor
University of Piraeus

Nikos Pelekis
Assistant Professor
University of Piraeus

Christos Doulkeridis
Assistant Professor
University of Piraeus

........................... ........................... ...........................

George Vouros
Professor

University of Piraeus

Yannis Kotidis
Professor

Athens University
of Economics and Business

Dimitrios Zissis
Associate Professor

University of the Aegean

...........................
Konstantinos Tserpes

Assistant Professor
Harokopio University





To my family and all the people that supported me during my years as a
PhD candidate.





Abstract

The unprecedented rate of trajectory data generation that has been observed
during the recent years, caused by the proliferation of GPS-enabled devices,
poses new challenges in terms of storage, querying, analytics and knowledge
extraction from mobility data.

One of these challenges is cluster analysis, which aims at identifying clusters
of moving objects according to the similarity degree of their movement.
Discovering clusters of moving objects is an important operation when
trying to extract knowledge out of mobility data, since by doing so, the
underlying hidden patterns of collective behavior can be unveiled. What is
even more challenging is treating knowledge discovery techniques, such as
cluster analysis, as an integral part of a real DMBS, which can turn out to
be practical and useful in real-world application scenarios, where issues like
the ease of use (e.g., via a simple SQL interface) are taken into consideration.
Furthermore, the support of incremental and progressive cluster analysis
in the context of dynamic applications is of great interest, where (i) new
trajectories arrive at frequent rates, and (ii) the analysis is performed over
different portions of the dataset, and this might be repeated several times
per analysis task. However, performing such “expensive” operations over
immense volumes of data in a centralized way is far from straightforward,
which in turn calls for parallel and distributed algorithms to address the
scalability requirements posed by the Big Data era. The bottleneck of
performing “expensive” operations, such as cluster analysis, is the underlying
join query. Joining trajectory datasets is not only the cornerstone of various
trajectory cluster analysis methods, but it is also a significant operation in
mobility data analytics with a wide range of applications, such as carpooling,
suspicious movement discovery, etc. In this thesis, we aim to address the
above challenges.

Towards this direction, we propose a novel in-DBMS Sampling-based Sub
Trajectory Clustering algorithm, namely S2T-Clustering, which is incor-
porated in a real MOD engine over an extensible DBMS (PostgreSQL in

i



Abstract

our prototype implementation) and turns out to solve the problem more
effectively than state-of-the-art techniques. Moreover, we introduce the
temporally-constrained subtrajectory cluster analysis problem. To address
it, we propose ReTraTree, an indexing scheme which organizes trajectories
by using an effective spatio-temporal partitioning technique. Partitions in
ReTraTree correspond to groupings of subtrajectories, which are incremen-
tally maintained and represented via a hierarchical organization of a small
(thus, light-weight in-memory) set of ‘representative’ subtrajectories. Given
this, the problem in hand can be efficiently solved as a query operator on
ReTraTree, coined QuT-Clustering. Our approach further contributes to
the mobility data management and mining domain for the additional rea-
son that it has been designed and implemented in a MOD engine. Such
functionality enables the application users to perform progressive cluster
analysis via simple SQL in a real extensible DBMS. Furthermore, we propose
an efficient in-DBMS architecture for progressive time-aware subtrajectory
cluster analysis, by utilizing the aforementioned in-DBMS solutions along
with a Visual Analytics (VA) tool to facilitate real world analysis.

Towards addressing the challenges posed by the Big Data era, we introduce
the Distributed Subtrajectory Join query, an important operation in the
spatiotemporal data management domain, where very large datasets of
moving object trajectories are processed for analytic purposes. To address this
problem in a scalable manner, we follow the MapReduce programming model.
Finally, we address the problem of Distributed Subtrajectory Clustering by
building upon the Distributed Subtrajectory Join query, in order to tackle
the problem in an efficient manner. We propose two alternative trajectory
segmentation algorithms and a distributed clustering algorithm where the
clusters are identified in a parallel manner.

ii



Περίληψη

Ο πρωτοφανής ρυθμός παραγωγής δεδομένων τροχιάς που παρατηρείται τα

τελευταία χρόνια και προκλήθηκε από τον πολλαπλασιασμό των συσκευών με

δυνατότητα GPS, δημιουργεί νέες προκλήσεις όσον αφορά την αποθήκευση,

την αναζήτηση, την ανάλυση και την εξαγωγή γνώσης από δεδομένα κίνησης.

Μια από αυτές τις προκλήσεις είναι η ανάλυση συστάδων, η οποία στοχεύει

στον εντοπισμό συστάδων κινούμενων αντικειμένων σύμφωνα με τον βαθμό

ομοιότητας της κίνησης τους. Η ανακάλυψη συστάδων κινούμενων αντικει-

μένων είναι μια σημαντική λειτουργία κατά την προσπάθεια εξαγωγής γνώσης

από δεδομένα κίνησης, διότι με τον τρόπο αυτό μπορούν να αποκαλυφθούν

τα υποκείμενα κρυμμένα πρότυπα συλλογικής συμπεριφοράς. Αυτό που είναι

ακόμη πιο δύσκολο είναι η αντιμετώπιση των τεχνικών ανακάλυψης γνώσης,

όπως η ανάλυση συστάδων, ως ενα αναπόσπαστο κομμάτι ενός πραγματικού

DMBS, το οποίο μπορεί να αποδειχθεί πρακτικό και χρήσιμο σε σενάρια εφαρ-

μογών πραγματικού κόσμου, όπου λαμβάνονται υπόψη θέματα όπως η ευκολία

χρήσης (π.χ. μέσω μιας απλής διεπαφής SQL). Επιπλέον, η υποστήριξη της

σταδιακής και προοδευτικής ανάλυσης συστάδων στο πλαίσιο των δυναμικών

εφαρμογών παρουσιάζει μεγάλο ενδιαφέρον, όπου (i)οι νέες τροχιές φθάνουν

με συχνό ρυθμό και (ii)η ανάλυση πραγματοποιείται σε διαφορετικά τμήματα

του συνόλου δεδομένων και αυτό μπορεί να επαναληφθεί πολλές φορές ανά

εργασία ανάλυσης. Ωστόσο, η εκτέλεση τέτοιων ‘δαπανηρών’ λειτουργιών σε

τεράστιους όγκους δεδομένων με κεντρικοποιημένο τρόπο δεν είναι καθόλου

εύκολη, πράγμα που με τη σειρά του απαιτεί παράλληλους και κατανεμημένους

αλγόριθμους για την αντιμετώπιση των απαιτήσεων που θέτει η εποχή των

Μεγάλων Δεδομένων. Το σημείο συμφόρησης της εκτέλεσης τέτοιων ‘δαπα-

νηρών’ λειτουργιών, όπως η ανάλυση συστάδων, είναι το υποκείμενο ερώτημα

‘σύνδεσης’. Η ‘σύνδεση’ συνόλων δεδομένων τροχιάς δεν αποτελεί μόνο τον

ακρογωνιαίο λίθο των διαφόρων μεθόδων ανάλυσης συστάδων τροχιών, αλλά

είναι επίσης μια σημαντική λειτουργία σε αναλύσεις δεδομένων κίνησης με ένα

ευρύ φάσμα εφαρμογών, όπως ο συνεπιβατισμός, η ανακάλυψη ύποπτων κινήσε-

ων κλπ. Σε αυτή τη διατριβή, στοχεύουμε να αντιμετωπίσουμε τις παραπάνω

προκλήσεις.

iii



Περίληψη

Προς αυτή την κατεύθυνση, προτείνουμε έναν νέο in-DBMS αλγόριθμο συστα-

δοποίησης υποτροχιών βασιζόμενο στη δειγματολειψία, ο οποίος ονομάζεται

S2T-Clusteringκαι είναι ενσωματωμένος σε ένα πραγματικό MOD μέσω ενός

επεκτάσιμου DBMS (της PostgreSQL στην πρωτότυπη υλοποίησή μας), που

επιλύει το πρόβλημα πιο αποτελεσματικά από την τελευταία λέξη της τεχνο-

λογίας. Επιπλέον, εισάγουμε το πρόβλημα της χρονικά περιορισμένη ανάλυση

συστάδων υποτροχιών. Προκειμένου να το αντιμετωπίσουμε, προτείνουμε το

ReTraTree, ένα σχήμα ευρετηρίου που οργανώνει τροχιές χρησιμοποιώντας

μια αποτελεσματική τεχνική χωροχρονικής διαμέρισης. Οι διαμερίσεις στο Re-
TraTree, αντιστοιχούν σε ομάδες υποτροχιών, οι οποίες διατηρούνται σταδια-

κά και αντιπροσωπεύονται μέσω μιας ιεραρχικής οργάνωσης μίας μικρής (κα-

τά συνέπεια ‘ελαφριάς’ όσον αφορά τη μνήμη) ομάδας «αντιπροσωπευτικών»

υποτροχιών. Δεδομένου αυτού, το υπό μελέτη πρόβλημα μπορεί να λυθε-

ί αποτελεσματικά ως ένα ερώτημα στο ReTraTree, το οποίο το ονομάζουμε

QuT-Clustering. Η προσέγγισή μας συμβάλλει περαιτέρω στον τομέα διαχείρι-

σης και εξόρυξης γνώσης δεδομένων κίνησης για τον πρόσθετο λόγο ότι έχει

σχεδιαστεί και εφαρμοστεί σε ένα MOD. Αυτή η λειτουργικότητα επιτρέπει

στους χρήστες της εφαρμογής να εκτελούν προοδευτική ανάλυση συστάδων

μέσω απλής SQLσε πραγματικά επεκτάσιμα DBMS. Επιπλέον, προτείνουμε μια

αποτελεσματική αρχιτεκτονική in-DBMS για την προοδευτική ανάλυση συ-

στάδων υποτροχιών, χρησιμοποιώντας τις προαναφερθείσες in-DBMS λύσεις,

σε συνδυασμό με ενα εργαλείο Οπτικής Ανάλυσης (VA) για τη διευκόλυνση

της ανάλυσης στον πραγματικό κόσμο.

Προς αντιμετώπιση των προκλήσεων που θέτει η εποχή των Μεγάλων Δε-

δομένων, παρουσιάζουμε το ερώτημα της Κατανεμημένης Σύνδεσης Υποτρο-

χιών, μια σημαντική λειτουργία στον τομέα των χωροχρονικών δεδομένων,

όπου πολύ μεγάλα σύνολα δεδομένων τροχιών κινούμενων αντικειμένων ε-

πεξεργάζονται για αναλυτικούς σκοπούς. Για να αντιμετωπίσουμε αυτό το

πρόβλημα με αποτελεσματικό τρόπο, χρησιμοποιήσαμε το μοντέλο προγραμ-

ματισμού MapReduce. Τέλος, αντιμετωπίζουμε το πρόβλημα της Κατανεμη-

μένης Συσταδοποίησης Υποτροχιών με βάση το ερώτημα της Κατανεμημένης

Σύνδεσης Υποτροχιών, προκειμένου να αντιμετωπίσουμε αποτελεσματικά το

πρόβλημα. Στη συνέχεια, προτείναμε δύο εναλλακτικούς αλγορίθμους τμημα-

τοποίησης τροχιάς και έναν κατανεμημένο αλγόριθμο ομαδοποίησης, όπου οι

συστάδες ταυτοποιούνται με έναν παράλληλο τρόπο.

iv



Contents

Abstract (English/Ελληνικά) i

List of Figures ix

List of Tables xiii

Part I Setting the Scene 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Application Scenarios . . . . . . . . . . . . . . . . . . . . . 5
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . 8
1.5.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 About Mobility Data . . . . . . . . . . . . . . . . . . 13
2.1.2 Modeling Mobility Data . . . . . . . . . . . . . . . . 14

2.2 Mobility Data Management . . . . . . . . . . . . . . . . . . 15
2.2.1 Querying Mobility Data . . . . . . . . . . . . . . . . 16
2.2.2 Indexing Mobility Data . . . . . . . . . . . . . . . . 17
2.2.3 In-DBMS Mobility Data Management . . . . . . . . 18

2.3 Joining Trajectories . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Distance Join . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 k-nn Join . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Similarity Join . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Spatial & Multidimensional Joins . . . . . . . . . . . . 21

v



Contents

2.4 Mining Mobility Data . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Co-movement Pattern Discovery . . . . . . . . . . . 22
2.4.2 Trajectory Clustering . . . . . . . . . . . . . . . . . 23
2.4.3 Sequential Pattern Discovery . . . . . . . . . . . . . 27
2.4.4 Data-driven predictive analytics . . . . . . . . . . . . 27

Part II In-DBMS Centralized Algorithms and
Techniques 29

3 In-DBMS Sampling-based Subtrajectory Clustering 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 35
3.3 The S2T-Clustering Algorithm . . . . . . . . . . . . . . . . 37

3.3.1 NaTS: Neighborhood-aware Trajectory Segmentation 38
3.3.2 SaCO: Sampling, Clustering, and Outlier detection . 39

3.4 S2T-Clustering In-DBMS . . . . . . . . . . . . . . . . . . . 42
3.4.1 NaTS in-DBMS . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 SaCO in-DBMS . . . . . . . . . . . . . . . . . . . . . 45

3.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Quality of Clustering Analysis . . . . . . . . . . . . 49
3.5.3 Efficiency and Scalability . . . . . . . . . . . . . . . 53

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Temporal-constrained Subtrajectory Cluster Analysis 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 The ReTraTree Indexing Scheme . . . . . . . . . . . . . . . 64

4.3.1 ReTraTree Overview . . . . . . . . . . . . . . . . . . 64
4.3.2 Hierarchical Temporal Partitioning . . . . . . . . . . 67
4.3.3 Sampling-based Subtrajectory Clustering . . . . . . 68
4.3.4 ReTraTree Maintenance . . . . . . . . . . . . . . . . 70

4.4 ReTraTree in Action . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 QuT-Clustering . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Architectural Aspects . . . . . . . . . . . . . . . . . 75
4.4.3 Complexity Analysis . . . . . . . . . . . . . . . . . . 76

4.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Parameter Settings . . . . . . . . . . . . . . . . . . . 80
4.5.2 Baseline Solution . . . . . . . . . . . . . . . . . . . . . 81

vi



Contents

4.5.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.4 Quality of Clustering Analysis in Synthetic Datasets

Including Ground Truth . . . . . . . . . . . . . . . . 82
4.5.5 Sensitivity Analysis with Respect to Various Parameters 88
4.5.6 Quality of Clustering Analysis in Real Datasets . . . 90
4.5.7 ReTraTree Maintenance . . . . . . . . . . . . . . . . . 91
4.5.8 I/O Performance . . . . . . . . . . . . . . . . . . . . 94
4.5.9 Efficiency of QuT-clustering versus S2T-Clustering . 94

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Major Modules and System Architecture . . . . . . . . . . . 102

5.2.1 S2T-Clustering . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 QuT-Clustering . . . . . . . . . . . . . . . . . . . . . 103
5.2.3 System Architecture . . . . . . . . . . . . . . . . . . 103

5.3 Demonstration of Results . . . . . . . . . . . . . . . . . . . 104
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Part III Distributed Algorithms and Techniques 109

6 Distributed Subtrajectory Join on Massive Datasets 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 A Closer Look at the Subtrajectory Join Problem . . 117
6.2.2 Properties of Subtrajectory Join . . . . . . . . . . . 119
6.2.3 Distributed Subtrajectory Join . . . . . . . . . . . . 120

6.3 The Basic Subtrajectory Join Algorithm . . . . . . . . . . . 122
6.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 122
6.3.2 The DTJb Algorithm . . . . . . . . . . . . . . . . . 123

6.4 Subtrajectory Join with Repartitioning . . . . . . . . . . . . 132
6.4.1 Repartitioning . . . . . . . . . . . . . . . . . . . . . 132
6.4.2 The DTJr Algorithm . . . . . . . . . . . . . . . . . . 135

6.5 Index-based Subtrajectory Join with Repartitioning . . . . 136
6.5.1 Indexing Scheme . . . . . . . . . . . . . . . . . . . . 136
6.5.2 The DTJi Algorithm . . . . . . . . . . . . . . . . . . 138

6.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . 140
6.6.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . 142

vii



Contents

6.6.2 Repartitioning and Load Balancing . . . . . . . . . . 144
6.6.3 Comparative Evaluation . . . . . . . . . . . . . . . . 145
6.6.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . 146
6.6.5 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Scalable Distributed Subtrajectory Clustering 151
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 154

7.2.1 Similarity between (sub)trajectories . . . . . . . . . 154
7.2.2 A Closer Look to the Subtrajectory Clustering Problem 156
7.2.3 Distributed Subtrajectory Clustering . . . . . . . . . 158

7.3 Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3.2 Distributed Subtrajectory Join . . . . . . . . . . . . . 161
7.3.3 Distributed Trajectory Segmentation . . . . . . . . . . 161
7.3.4 Distributed Clustering . . . . . . . . . . . . . . . . . 166

7.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 169
7.5 Experimental Study . . . . . . . . . . . . . . . . . . . . . . 170

7.5.1 Parameter Setting . . . . . . . . . . . . . . . . . . . . 171
7.5.2 Comparison with related work . . . . . . . . . . . . 172
7.5.3 Performance and Scalability . . . . . . . . . . . . . . 174
7.5.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . 175

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Part IV Outlook 179

8 Conclusions 181

9 Ideas for Future Work 183

Bibliographical References 185

viii



List of Figures

1.1 The 2-D map of (a) SMOD and (b) Intersection . . . . . . . 9

2.1 (a) An example of a raw trajectory and (b) an example of
linear interpolation. . . . . . . . . . . . . . . . . . . . . . . 15

2.2 (Examples of timeslice, spatiotemporal range and nearest-
neighbor queries [71]. . . . . . . . . . . . . . . . . . . . . . . 17

2.3 An example of T-OPTICS result [56]: The algorithm is able
to separate four clusters (in black, green, blue, purple) as well
as detect a few outliers (in grey). . . . . . . . . . . . . . . . 24

2.4 Overview of TRACLUS [71]. . . . . . . . . . . . . . . . . . 26

3.1 (a) a set of 4 trajectories; (b) the set split in 2 clusters (in red
and blue) and 5 outliers (in black). . . . . . . . . . . . . . . 33

3.2 The Trajectory Buffer TBk (i.e. the sequence of the blue
MBBs) of a trajectory Tk. . . . . . . . . . . . . . . . . . . . 44

3.3 The effect on (a) QMeasure, (b) SRD, (c) the discovered
number of clusters, when varying s_buffer parameter around
its default value. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Visualization of the clusters’ representatives provided by: S2T-
Clustering in (a) 2D and (b) 3D, (c) TRACLUS, when applied
to a subset of SMOD consisting of 2 patterns. . . . . . . . . . 51

3.5 Visualization of the clusters’ representatives provided by: S2T-
Clustering in (a) 2D and (b) 3D, (c) TRACLUS, when applied
to the entire SMOD consisting of 8 patterns. . . . . . . . . 52

3.6 Quality of S2T-Clustering w.r.t. number of clusters. . . . . 53
3.7 Comparing the performance of baseline solutions: (a) Baseline-

I; (b) Baseline-II. . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Step-by-step execution time of S2T-Clustering: (a) voting over

IMIS1; (b) segmentation/sampling/clustering over IMIS1; (c)
overall over IMIS1; (d) voting over GeoLife. . . . . . . . . . 56

4.1 Six trajectories, spanning in 2 days, split into daily chunks. 65

ix



List of Figures

4.2 Overview of the ReTraTree indexing scheme. . . . . . . . . 66
4.3 Representatives of a chunk with two sub-chunks (dashed vs.

continuous polylines) organized in a temporal priority queue
of two groups (blue vs. red polylines). . . . . . . . . . . . . 73

4.4 Architectural aspects of ReTraTree. . . . . . . . . . . . . . . 77
4.5 The representatives of the four sub-chunks. . . . . . . . . . 84
4.6 QuT-Clustering results with W=[0, 100]. . . . . . . . . . . . 85
4.7 The trajectories of the SMOD with additive noise of SNR = 50

db projected in (a) 2-D spatial space ignoring time dimension
and (b) spatiotemporal 3-D space. The trajectories of the
SMOD with additive noise of SNR = 30 db projected in (c)
2-D spatial space and (d) spatiotemporal 3-D space. (e) The
four outliers of the SMOD with additive noise of SNR = 50
db projected in 2-D spatial space ignoring time dimension. (f)
The four outliers of our synthetic MOD with additive noise of
SNR = 30 db projected in 2-D spatial space. . . . . . . . . 86

4.8 The representative trajectories (i.e. clusters) discovered by (a)
S2T-Clustering (b) TRACLUS. . . . . . . . . . . . . . . . . 87

4.9 Quality of S2T-Clustering w.r.t. number of clusters. . . . . 88
4.10 (a)-(c)-(e)-(g)-(i) Sum of Square Errors, (b)-(d)-(f)-(h)-(j) Ex-

ecution time, when varying the parameters of QuT-Clustering. 89
4.11 V R

DW−R of QuT-Clustering and S2T-Clustering against batches
of varying lifespan (setting W to their whole lifespan): (a)
IMIS2, (b) GeoLife. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 Construction time of ReTraTree vs. 3DR-Tree (and execution
time of QuT-Clustering and S2T-Clustering) against datasets
with increasing size: (a) IMIS2, (b) GeoLife. . . . . . . . . . 92

4.13 Append of ReTraTree: (a) IMIS2, (b) GeoLife. . . . . . . . 93
4.14 Space requirements: (a) IMIS2, (b) GeoLife. . . . . . . . . . 94
4.15 QuT-Clustering vs. S2T-Clustering (IMIS2 only): (a) blocks

read from disk, (b) hit ratio. . . . . . . . . . . . . . . . . . . 95
4.16 Execution time of QuT-Clustering vs. S2T-Clustering by

varying the datasets’ lifespan (IMIS2). . . . . . . . . . . . . 95
4.17 Accumulated execution time of QuT-Clustering vs. S2T-

Clustering w.r.t. a bundle of queries of random lifespan (IMIS2). 96

5.1 Interactive visual exploration of clustering results: map display
of clusters (top); evolution of cardinality of clusters over time
(middle); 3D shapes of cluster members (bottom). . . . . . . . 101

x



List of Figures

5.2 Architecture of the time-aware subtrajectory clustering module
implemented in Hermes@PostgreSQL. . . . . . . . . . . . . 105

5.3 Time-aware subtrajectory clustering in action: cluster rep-
resentatives from two different runs of S2T-Clustering are
visually compared by means of a 3D display. . . . . . . . . . 106

5.4 Time-aware subtrajectory clustering in action (cont.): holding
patterns performed by aircrafts are discovered and visualized. 107

6.1 (a) A pair of maximally “matching” subtrajectories and (b) a
breaking point r1 and a non-joining point s5 w.r.t. r. . . . . 113

6.2 The DTJb algorithm in MapReduce. . . . . . . . . . . . . . 124
6.3 Join phase - The TRJPlaneSweep algorithm. . . . . . . . . 128
6.4 Output of Join and input of Refine phase. . . . . . . . . . . 129
6.5 Refine procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.6 The DTJr algorithm in MapReduce: (a) Repartitioning step

and (b) Query step. . . . . . . . . . . . . . . . . . . . . . . 134
6.7 Indexing Scheme of DTJi algorithm . . . . . . . . . . . . . 136
6.8 Example of TRJPlaneSweepI . . . . . . . . . . . . . . . . . . 140
6.9 Scalability analysis varying (a),(b) the size of the dataset and

(c),(d) the number of nodes. . . . . . . . . . . . . . . . . . . 142
6.10 (a) Repartitioning cost and (b) Load balancing . . . . . . . 144
6.11 Comparative evaluation between DTJi and SJMR . . . . . 146
6.12 Sensitivity analysis varying (a) εt, (b) εsp and (c) δt . . . . 147
6.13 (a) Index construction time, (b) Index size and (c) Effect of εsp 148

7.1 (a) Six trajectories moving in the xy-plane and (b) 4 clusters
(red, blue, orange and purple) and 2 outliers (black). . . . . 152

7.2 A pair of “matching” subtrajectories (r4,8, s3,7). . . . . . . . 157
7.3 The DSC algorithm. (Job 1) DTJ and Trajectory Segmenta-

tion and (Job 2) Clustering and Refine Results. . . . . . . . 160
7.4 (a) Five trajectories A → B, A → C, A → D, C → B and

D → B, (b) TSA1 segmentation, (c) TSA2 segmentation . . 162
7.5 The two consecutive sliding windows W1 and W2 used by the

segmentation algorithms. . . . . . . . . . . . . . . . . . . . . 163
7.6 Identified clusters by (a) T-OPTICS and (b) DSC . . . . . 173
7.7 Comparison of the RMSE metric between DSC, S2T-Clustering

and TraClus . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.8 Scalability analysis varying the size of the (a) AIS Brest and

(b) SIS dataset and the number of nodes over the (c)AIS Brest
and (d) SIS dataset . . . . . . . . . . . . . . . . . . . . . . . 175

xi



List of Figures

7.9 Sensitivity analysis in terms of execution time of (a) the AIS
Brest and (b) the SIS dataset and in terms of RMSE of (c)
the AIS Brest and (d) the SIS dataset . . . . . . . . . . . . 176

xii



List of Tables

1.1 Synthetic Datasets Summary . . . . . . . . . . . . . . . . . 10
1.2 Real Datasets Summary . . . . . . . . . . . . . . . . . . . . . 11

3.1 Table of Symbols used in Chapter 3 . . . . . . . . . . . . . 35
3.2 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 The ground truth hidden in SMOD . . . . . . . . . . . . . . 49

4.1 Table of Symbols used in Chapter 4 . . . . . . . . . . . . . . 61
4.2 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 The ground truth hidden in SMOD . . . . . . . . . . . . . . 83

6.1 Table of Symbols used in Chapter 6 . . . . . . . . . . . . . 117
6.2 Comparison between the proposed solutions . . . . . . . . . 122
6.3 Parameters and default values (in bold) used in the experi-

mental study of Chapter 6 . . . . . . . . . . . . . . . . . . . . 141

7.1 Parameters and default values (in bold) used in the experi-
mental study of Chapter 7 . . . . . . . . . . . . . . . . . . . . 171

xiii





Acronyms

AIS Automatic Identification System (radio navigation)

API Application Program Interface

DBMS DataBase Management System

DTW Dynamic Time Warping

GiST Generalized Search Tree

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

HDFS Hadoop Distributed File System

KDD Knowledge Discovery in Data

LBS Location-Based Services

LCSS Longest Common SubSequence

MBB Minimum Bounding Box

MOD Moving Objects Database

MR MapReduce

ORDBMS Object-Relational DataBase Management System

RDBMS Relational DataBase Management System

SQL Structured Query Language

VA Visual Analytics

xv





Part ISetting the Scene

1





1 Introduction

During the recent years, the proliferation of GPS enabled devices has led
to the production of enormous amounts of mobility data. This “explosion”
of mobility data generation has posed new challenges in the data manage-
ment community, in terms of storage, querying, analytics and knowledge
extraction out of such data. In this chapter, we introduce the problem
under consideration, provide the motivation, and present some interesting
application scenarios. Furthermore, we present the challenges faced and the
contributions of this thesis. Finally, we provide the thesis organization.

1.1 Motivation

During the past two decades, the field of Moving Object Databases (MODs)
has emerged for the efficient management of such data, by exploiting existing
extensible DBMSs [19, 66]. By doing so, we tackle the problem of storage,
querying and indexing. However, knowledge discovery techniques, such
as cluster analysis, are not treated as an integral part of MODs. What
actually happens is that the data are exported from the MOD to an ad-hoc
implementation and subsequently the results are re-imported to the MOD.
Treating knowledge discovery techniques, such as cluster analysis, as an
integral part can be practical and useful in real-world application scenarios,
where where issues like the ease of use use (e.g., via a simple SQL interface)
are taken into consideration. Therefore, we argue that this is an important
step towards bridging the gap between MOD management and mobility data
mining, as state-of-art approaches [52, 99, 35] could make use of the efficiency
and the advantage of our proposal to execute in-DBMS clustering via simple
SQL.

3



Chapter 1. Introduction

Trajectory clustering is an important operation of knowledge discovery from
mobility data. The research so far has focused mainly in methods that aim
to identify specific collective behavior patterns among moving objects, such
as [48, 45, 44, 60, 51, 50, 92, 107, 28]. However, this kind of approaches
operate at specific predefined temporal “snapshots” of the dataset, thus
ignoring the route of each moving object between these sampled points.
Another line of research, tries to identify patterns that are valid for the
entire lifespan of the moving objects [56, 67, 21, 79]. However, discovering
clusters of complete trajectories can overlook significant patterns that might
exist only for some portions of their lifespan. Subtrajectory clustering is a
typical cluster analysis problem, where the goal is to segment trajectories
and discover clusters of subtrajectories. Finding a solution to the above
described subtrajectory clustering problem is challenging; what is even more
challenging, is how one can support incremental and progressive cluster
analysis in the context of dynamic applications, where (i) new trajectories
arrive at frequent rates, and (ii) the analysis is performed over different
portions of the dataset, and this might be repeated several times per analysis
task.

However, performing advanced knowledge discovery operations, such as
subtrajectory clustering (e.g., [70, 49, 3]), over immense volumes of data
in a centralized way is far from straightforward. This calls for parallel
and distributed algorithms that address the scalability requirements. The
bottleneck of these approaches is that their computation raises efficiency
issues due to the fact that all of them are actually based on a spatiotemporal
similarity join query. Repeated multidimensional range queries, which are
found in the core of a large class of knowledge discovery algorithms can be
transformed equivalently in a similarity self-join. Joining trajectory datasets
is not only the cornerstone of various methods that aim to identify different
kinds of mobility patterns (group behavior, etc.), but is also a significant
operation in mobility data analytics with a wide range of applications, such
as, carpooling, suspicious movement discovery etc. It is obvious that the
need for overcoming this bottleneck becomes more imperative in the era
of Big Data, which calls for parallel and distributed solutions that scale
beyond the limitations of a single machine. In this context, one challenge
is how to partition the data in such a way so that each node can perform
its computation independently, thus minimizing the communication cost
between nodes, which is a cost that can turn out to be a serious bottleneck.
Another challenge, related to partitioning, is how to achieve load balancing,
in order to balance the load fairly between the different nodes. Yet another

4



1.2. Application Scenarios

challenge is to minimize the iterations of data processing, which are typically
required in clustering algorithms.

1.2 Application Scenarios

To facilitate the discussion about the importance of this thesis and its impact
in our society, let us cite some interesting application scenarios.

To begin with, let us consider the trajectory join operation. For instance,
in the urban traffic domain, carpooling is becoming increasingly popular.
More concretely, consider a mobile application which tries to match users
that can share a ride based on their past movements. Here, given a set of
trajectories we want to find all the pairs of users that can share a ride for
a portion of their everyday routes without significantly deviating (spatially
and temporally) from their daily routine (i.e. retrieve all pairs of maximal
subtrajectories that move close in space and time).

Another interesting scenario concerns the identification of suspicious move-
ment by a governmental security agency. For instance, given a set of trajec-
tories that depict the movement of suspicious individuals, we would like to
retrieve all the pairs of moving objects that move “close” to each other for
a duration that exceeds a threshold (moving together for small periods of
time could be considered as coincidental) as candidates for illegal activity.
In the maritime domain, suspicious group movements of vessels is also of
great interest, since they might indicate e.g., illegal transshipment activity.

Trajectory segmentation techniques [62, 70], can directly benefit from the
subtrajectory join query since their input, for each trajectory, is the spa-
tiotemporal neighbourhood of each object. Moreover, such a query is in fact
the building block for a number of operations than aim to identify mobil-
ity patterns, such as co-movement patterns (e.g., flocks [37], convoys [44],
swarms [51]).

An even more challenging problem is that of subtrajectory clustering [70, 3].
An interesting application scenario of subtrajectory clustering is network
discovery, where given a set of trajectories (e.g from the maritime or the
aviation domain) we want to identify the underlying network of movement
by grouping subtrajectories that move “close” to each other and use cluster
representatives/medoids as network edges.

5



Chapter 1. Introduction

An additional valuable application scenario of subtrajectory clustering is
predictive analytics over mobility data, where the goal is the extraction
of valuable knowledge from data and its utilization in order predict future
behavioural patterns (i.e. movement) [74, 73]. The general idea is first to
identify popular mobility patterns, either global (for the whole dataset) or
local (for each moving object separately), by employing some subtrajectory
clustering technique that also provides the cluster representatives. Then,
when some new position of a moving object is reported, the goal is to try
to “match” the new portion of movement with the most similar historical
patterns and employ this pattern in order to predict its future location.

Another application of great interest, is that of interactive mobility data
exploration and analysis, which can aid/facilitate mobility analysts, in e.g.
urban planning and traffic analysis applications. To achieve this, we demon-
strate how a MOD engine, built on top of an extensible DBMS, can efficiently
incorporate advanced mobility data analytics methods. In more detail, we
demonstrate the feasibility of progressive time-aware analytics, in terms of
allowing a data analyst to select different time periods to perform his/her
analysis, without being obliged to apply from scratch costly preprocessing or
iterative clustering procedures.

1.3 Challenges

Concerning the challenges that arise when dealing with the aforementioned
problems, the problem of subtrajectory clustering is shown to be NP-Hard
(cf. [3]). In addition, the objects to be clustered are not known beforehand,
but have to be identified through a trajectory segmentation procedure. Efforts
that try to deal with this problem in a centralized way do exist [49, 70, 3],
however, applying centralized algorithms for subtrajectory clustering over
massive data in a scalable way is far from straightforward. This calls for
parallel and distributed algorithms that address the scalability requirements.
In this context, one challenge is how to partition the data in such a way so
that each node can perform its computation independently, thus minimizing
the communication cost between nodes, which is a cost that can turn out to
be a serious bottleneck. Another challenge, related to partitioning, is how
to achieve load balancing, in order to balance the load fairly between the
different nodes. Yet another challenge is to minimize the iterations of data
processing, which are typically required in clustering algorithms.

6



1.4. Contributions

Concerning the trajectory join problem, there have been some efforts to
tackle variations of this problem in a centralized way [9, 11, 17]. However,
the problem definitions of these approaches differ from one another and are
not general enough in order to capture different kinds of mobility patterns.
Moreover, in [10, 9] they make the assumption that all the trajectories have
the same number of points and that these points are synchronized between
any two given trajectories, which is not realistic in real life applications
and requires a preprocessing step that can be prohibitive when dealing with
Big Data. In addition, in [17] the definition of the trajectory join is not
symmetric. However, these solutions discover pairs of entire trajectories and
cannot identify matching subtrajectories. In [10], all pairs of “matching”
(with respect to a spatial threshold) subtrajectories of exactly δt duration are
retrieved, where the goal is to identify maximally “matching” subtrajectories,
which is vital for exploiting the output in subsequent steps, e.g., the mining
operations mentioned above. Moreover, applying these centralized solutions
to a parallel and distributed environment is not straightforward and is often
impossible if radical changes to the methods/algorithms do not take place,
since there are several non-trivial issues that arise. For instance, how to
partition the data in such a way so that each partition can be processed
independently and be of even size. As another example, assuming that all
the nodes in the cluster have similar processing power, in order to achieve
the fastest execution of an algorithm the load must be balanced among the
nodes. Furthermore, due to the read/write cost from/to the disk, the number
of reads and writes should be minimized and ideally the whole procedure
should be performed in “one pass”.

1.4 Contributions

The contributions of this thesis are summarized below:

• We propose S2T-Clustering, an efficient in-DBMS sampling-based sub-
trajectory clustering algorithm. We implement S2T-Clustering as a
query operator in an extensible DBMS, namely PostgreSQL, based
on access methods that exploit on the GiST indexing extensibility
interface.

• We introduce the temporal-constrained subtrajectory cluster analysis
problem, we design ReTraTree, an efficient indexing scheme for large
dynamic MODs, which is based on representative trajectories found

7



Chapter 1. Introduction

in the dataset. As a solution to the problem under study, we devise
QuT-Clustering, a subtrajectory clustering algorithm running as simply
as a query operator upon ReTraTree.

• We propose an architecture that builds upon the aforementioned sub-
trajectory clustering approaches in order to enable interactive mobility
data exploration and analysis by utilizing a MOD engine built on top
of extensible DBMS.

• We formally define the problem of Distributed Subtrajectory Join pro-
cessing, investigate its main properties, and present a well-designed
algorithm, called DTJb, and two improvements, namely DTJr and
DTJi, which extends DTJr by exploiting an indexing scheme that
speeds up the computation of the join.

• We formally define the problem of Distributed Subtrajectory Clustering,
propose two neighborhood-aware trajectory segmentation algorithms
and design an efficient and scalable solution for the specific problem.

• We perform an extensive experimental study, with both synthetic and
real datasets from different mobility domains (urban, aviation and
maritime) to evaluate the effectiveness and efficiency of the proposed
algorithms.

1.5 Datasets

The synthetic and real datasets that were used throughout this thesis are
the following.

1.5.1 Synthetic Datasets

SMOD - Synthetic MOD (SMOD) consists of 400 trajectories and is
used for the ground truth verification in Chapters 3 and 4. The scenario of
the synthetic dataset is the following: the objects move upon a simple graph
that consists of the following destination nodes (points) with coordinates:
A(0,0), B(1,0), C(4,0) and D(2,1). Half of the objects move with normal
speed (2 units per second) and another half move with high speed (5 units
per second). Figure 1.1 illustrates the 2D map of the SMOD consisting of
three one-directional (A→ B, B → D, D → C) and one bi-directional road
(B ↔ C). All objects move under the following scenario, for a lifetime of 100
seconds:

8



1.5. Datasets

• (normal movement – 99% of the trajectories) All objects start from
point A towards point B; the high-speed objects start at t = 0 sec and
the normal-speed objects start at t = 20 sec. When an object arrives
at B, it ends its trajectory with a probability of 15%; otherwise, it
continues with the same speed to the next point. If there exist more
than one option for the next point, it decides randomly about the next
destination.

• (abnormal movement – 1% of the trajectories) A few outlier objects
follow a random movement in space (other than these roads) with a
speed that is updated randomly.

 

(a)

A

B

C

D

O

(b)

Figure 1.1: The 2-D map of (a) SMOD and (b) Intersection

Intersection consist of 409 trajectories and is used for the ground truth
verification in Chapter 7. The scenario of the synthetic dataset is the following:
the objects move in the xy-plane in six predefined origin-destination pairs.
More specifically, as illustrated in Figure 1.1, these pairs are A→ B, A→ C,
A → D, B → A, B → C and B → D. The trajectories have the same
starting time and similar speed.

Table 1.1 summarizes the basic statistics of the synthetic datasets that were
employed in this thesis.

9



Chapter 1. Introduction

Table 1.1: Synthetic Datasets Summary

Statistic SMOD Intersection
# Trajectories 400 409

# Points 35273 2573
Dataset Duration 120 seconds 23 seconds

1.5.2 Real Datasets

IMIS1 is a real dataset which consists of 699,031 trajectories of ships moving
in the Eastern Mediterranean for a period of 3 years. This dataset contains
approximately 1.5 billion records, 56GB in total size. This dataset was
collected through the Automatic Identification System (AIS) through which
ships are obliged to broadcast their position for maritime regulatory purposes.

IMIS1 is a subset of IMIS consisting of the trajectories of 637 ships moving
in the Greek seas for one week.

IMIS2 is also a subset of IMIS consisting of the trajectories of 2,181 ships
sailing in the Eastern Mediterranean for one week.

Brest2[76] is a 650MB publicly available AIS dataset of vessels moving in
the wider Brest area, consisting approximately of 3.65× 105 trajectories that
correspond 17× 106 points.

GeoLife [110] consists of the trajectories of 178 users in a period of more
than four years; this dataset represents a wide range of movements, including
not only urban transportation (e.g., from home to work and back) but also
different kinds of activities, such as sports activities, shopping, etc.

SIS3 is a 27GB proprietary insurance dataset of moving objects around
Rome and Tuscany area, that contains approximately 2.2× 107 trajectories
that correspond to 7.2× 108 points.

LondonLanding is a dataset from the aviation domain that consists of
1118 flights approaching airports of the London metropolitan area.

Table 1.2 summarizes the basic statistics of the real datasets that were
employed in this thesis.

1IMIS dataset has been kindly provided by IMIS Hellas for research and educational
purposes. It is available for downloading at http://chorochronos.datastories.org

2https://zenodo.org/record/1167595#.XKHTyaRRVPa
3This private dataset was kindly provided by Gruppo Sistematica SpA

10

http://chorochronos.datastories.org
https://zenodo.org/record/1167595#.XKHTyaRRVPa


1.6. Thesis Organization

Table 1.2: Real Datasets Summary

Statistic # Trajectories # Points Area Dataset
Duration

IMIS 699031 1.5×109 Eastern
Mediterranean

3 years

IMIS1 5110 443657 Greece 1 week
IMIS2 5110 449680 Eastern

Mediterranean
1 week

Brest 365000 17× 106 Brest 6 months
GeoLife 18668 24× 106 China and

USA
4 years

SIS 2.2× 107 7.2× 108 Rome and Tus-
cany

2.5 years

London
Landing

1118 95396 London 1 day

1.6 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 presents some background knowledge and a literature review on
the topics of this thesis.

Part II deals with in-DBMS solutions to problems related with the manage-
ment and mining of mobility data. More specifically, Chapter 3 introduces
S2T-Clustering [70], an efficient in-DBMS sampling-based subtrajectory clus-
tering algorithm. Subsequently, Chapter 4 presents an efficient indexing
scheme for large dynamic MODs, called ReTraTree, along with a query
operator upon ReTraTree, which tackles the problem of temporal-constrained
subtrajectory cluster analysis [69]. Chapter 5 introduces an architecture that
builds upon the solutions presented in Chapters 3 and 4 in order to enable
interactive mobility data exploration and analysis.

Inspired by the limitations of the approaches that were presented in Part II
and under the light of the Big Data era and the immense volumes of generated
data, Part III deals with the management and mining of mobility data in
a distributed way. In more detail, Chapter 6 presents an efficient load
balanced, index-based solution to the problem of Distributed Subtrajectory
Join processing, which is the cornerstone of various methods that aim to
identify different kinds of mobility patterns. Chapter 7, presents an efficient
and scalable solution for the problem of Distributed Subtrajectory Clustering,

11



Chapter 1. Introduction

which builds upon the findings of Chapter 6.

Finally in Part IV we conclude the thesis. In particular, in Chapter 8 we
summarize the thesis and in Chapter 9 we discuss future work directions.

12



2 Background

In this chapter, we provide an overview of the topics related to this thesis
and a survey of the related work. Initially we discuss the key concepts in
mobility data management, such as modelling, storing, querying and indexing
mobility data. Subsequently, we provide an extensive literature review on
joining trajectory datasets, which is a significant operation in mobility data
analytics and the cornerstone of various methods that aim to identify different
kinds of mobility patterns. We then discuss about mobility data mining
methods, such as co-movement and sequential patterns, trajectory clustering
and data-driven predictive analytics.

2.1 Fundamentals

During the recent years, the proliferation of GPS enabled devices has led to
the production of enormous amounts of mobility data. This “explosion” of
data generation has posed new challenges in the data management community.
In this chapter we present the fundamentals about mobility data.

2.1.1 About Mobility Data

Mobility data refers to data, representing the movement of objects, like people,
animals, cars, vessels, aircrafts, hurricanes etc. It is important to clarify
from the very beginning that ‘location’ mentioned in the previous examples
varies in size and resolution; it could vary from points (for instance, locations
recorded by GPS devices are points with a tolerance of a few meters) to a
very broad area (for instance, locations recorded by mobile phone providers
could be regions of several sq.km. area). This inaccuracy in positioning is

13



Chapter 2. Background

not necessarily a problem. It depends on the application whether an area of
order of sq.km. is adequate positioning or the object should be identified
within no more than a few meters. For example, resolution of a few meters
is mandatory for effective navigation (where the road signs and turns are
in front of us); on the other hand, answers to information services, such as
localized weather report may be valid for a resolution of several km. Due
to its popularity and its high accuracy with respect to ‘location’ recorded,
hereafter we focus on GPS data.

Concerning the analysis of mobility data, mobility data analytics aim to
describe the mobility of objects, to extract valuable knowledge by revealing
motion behaviors or patterns, to predict future mobility behaviors or trends
and in general, to generate various perspectives out of data, useful for
many other scientific fields. To serve its purpose, mobility data analytics
follows a series of steps. Having assured the collection and efficient storage
of mobility data, the next step for an analyst is to familiarize with the
mobility data by employing a number of techniques (e.g., statistics, data
visualization and visual analytics) to form a compact and complete picture
of the available mobility data. Afterwards, the analyst, depending on the
application requirements, proceeds to the appropriate preprocessing steps.
The goal is to bring mobility data in a form that serves its later usage by
various processes and algorithms that respond to the given questions. Data
preparation is essential for successful mobility data analytics, since low-
quality data typically result in incorrect and unreliable conclusions. Finally,
mobility data are ready for the application of knowledge extraction methods
that will satisfy the given application requirements. There are already several
analytical methods and algorithms available from the scientific community
and an analyst has the capability either to employ some of the existing
techniques or implement some ad-hoc solutions that better serve the problems
needs.

2.1.2 Modeling Mobility Data

Due to discretization, a moving object is represented by a trajectory, which
is a sequence of sampled time-stamped locations (pi, ti) where pi is a 2-
dimensional point–pair (xi, yi) – and ti is the recording timestamp of pi, as
illustrated in Figure 2.1(a). In order to simulate the continuous movement of
objects, a common representation of a trajectory is a 3-dimensional polyline
where vertices correspond to time-stamped locations (pi, ti) and linear

14



2.2. Mobility Data Management

interpolation is assumed between (pi, ti) and (pi+1, ti+1), as depicted in
Figure 2.1(b).

(a)

(b)

Figure 2.1: (a) An example of a raw trajectory and (b) an example of linear
interpolation.

The basic assumption followed by this formula is that the velocity vector
(i.e., speed and direction) remains constant during time interval [ti, ti+1),
which (unfortunately) results in discontinuous evolution of those movement
parameters, exactly at the recorded timestamps ti. The result of the above
discussion is that the “trajectory” of a moving object can be modeled ac-
cording to the concept of sliced representation: this model decomposes the
temporal development of a value into fragments called ‘slices’, such that
within a slice this development can be described by some kind of “simple”
function.

The above discussion assumes movement in the (unconstrained) Euclidean
space. However, in several applications, moving objects are assumed to move
along transportation networks. Formally, a transportation network is modeled
as G = (V,E), where V is a set of m vertices {v1, v2, . . . , vm}, representing
e.g., road junctions, and E ⊂ V × V is a set of n edges {e1, e2, . . . , en},
with each edge connecting two vertices, vfrom and vto, and representing
e.g., routes between road junctions. Following this, a trajectory can be
modeled as a sequence of edges and/or vertices along with some offsets and
the corresponding time.

2.2 Mobility Data Management

An integral part of any mobility data analytics effort is to assure the collection
and efficient storage of mobility data. Towards this direction there have

15



Chapter 2. Background

been proposed several mobility-aware queries and the corresponding indexing
structures to ensure their efficient execution. Moreover, there have been
some efforts to integrate such functionality with real world RDBMSs.

2.2.1 Querying Mobility Data

According to [71], queries over mobility data can be classified queries as
location-oriented versus trajectory-oriented queries with the distinction em-
phasizing on the assumed model of trajectory objects: the former considers
movement as a sequence of sampled points whereas the latter considers
movement as a continuous evolution (trajectory).

Location-oriented queries are essentially spatial, though taking into consider-
ation that the spatial objects are changing their locations with time. Typical
examples include:

• Continuous Nearest Neighbor (CNN) query: CNN query retrieves the
nearest (among a set of candidate points) of every location on a polyline
(actually, the trajectory of a moving object from a starting to an ending
point).

• Sequenced Route (SR) query: SR query finds the shortest path from a
starting s to an ending point e, visiting a sequence of facilities from a
set of facility classes.

Trajectory-oriented queries are the most popular in MOD literature and can
be broken down to coordinate-based and trajectory-based queries.

Coordinate-based queries, are focused in filtering the trajectory database
setting conditions on the (space- and/or time-) coordinates of the segments
that compose the trajectories. Figure 2.2 illustrates these types of queries.
Such queries are:

• timeslice queries,

• spatiotemporal range queries and

• nearest-neighbor queries in three versions, point NN, trajectory NN,
and historical continuous point NN.

16



2.2. Mobility Data Management

Figure 2.2: (Examples of timeslice, spatiotemporal range and nearest-
neighbor queries [71].

On the other hand, in trajectory-based queries, it is essential to have knowledge
of the entire trajectory (or, at least, a subtrajectory of it) in order to be
able to provide the answer, e.g., “find the trajectories that are the most
similar to a given trajectory”, as well as topological and navigational queries
with respect to a stationary object, e.g., “find the trajectories that entered
(crossed, left, bypassed, etc.) a given region during a given time interval” and
“. . .were located west of (south of, etc.) a given region . . . ”, respectively) as
well as their counterparts when the reference object is another trajectory
(“find the trajectories that met (followed, were in front of, etc.) a given
trajectory”).

Moreover, combined coordinate- and trajectory-based queries are expected
to be of great interest in MOD. Consider the following example: “find
trajectories that entered a given region during a given time interval, stayed
inside the region for a given time period, and then left the region at a speed
higher than a given speed threshold”. For sure, interesting query processing
issues arise here. Last but not least, an emerging family of trajectory-oriented
queries is motivated by traffic analysis; examples include path queries (“find
the trajectories that have moved along an entire path”) and traffic queries
(“find places on the road network where traffic jams appear”), etc.

2.2.2 Indexing Mobility Data

The ubiquity of R-trees in spatial databases has been expanded also in the
domain of mobility data. To name but a few representative approaches, the
3D-Rtree for the purposes of spatiotemporal indexing was proposed in [94],

17



Chapter 2. Background

while it was adapted to organize trajectories of moving objects in [75], where
the TB-tree and STR-tree were introduced. The overhead introduced by
representing trajectory segments as MBBs in a R-tree like structure was
studied in [39]. MV3R-tree [93] is another efficient proposal for indexing
the past movement of mobility data, consisting of a multi-version R-tree
(extending the idea of multi-version B-tree) and a small auxiliary 3D-Rtree
pointing to the leaf nodes of the former. A recent approach in trajectory
indexing includes TrajStore [18], which is actually a storage scheme consisting
of distinct spatial and temporal indexes. PA-tree [58] is a parametric index
that organizes the coefficients of continuous polynomials approximating
movement functions. All the above state-of-the-art indexing techniques make
use of clustering methods so as to take advantage of their properties in the
organization of the data (e.g., improve the compactness of the MBBs in
R-tree-like structures).

2.2.3 In-DBMS Mobility Data Management

During the past decade, the field of MOD has emerged as a strong candidate
for the efficient management of trajectory data exploiting on the robust archi-
tecture of extensible DBMS; Secondo [19], Hermes [66] and MobilityDB [111]
are typical examples of this paradigm. Nevertheless, extending a DBMS does
not reduce the complexity of understanding their concurrency and recovery
protocols, and as such, does not reduce the implementation effort of an
external access method when compared to a built-in one, assuming that
identical levels of concurrency, robustness and integration are desired [46].
Actually, complexity is the main reason that almost none of the numerous
access methods for mobility data that have been proposed in the litera-
ture, [39, 75, 92] to name but a few representatives, have been integrated in
a real Object-Relational DBMS. Even GiST [40], which has been proposed
to provide access method extensibility has only recently started to be used
in the context of mobility data by Hermes@PostgreSQL [98] and Mobili-
tyDB [111]. Mainly due to the above reasons, although a lot of research has
been carried out in the field of MOD regarding efficient indexing and query
processing, almost no related work exists in the field of mobility data mining
in-DBMS [72].

18



2.3. Joining Trajectories

2.3 Joining Trajectories

Joining trajectory datasets is a significant operation in mobility data analytics
and the cornerstone of various methods that aim to identify different kinds of
mobility patterns (group behavior, etc.). Trajectory joins are closely related
to three topics in the spatial and spatiotemporal database management
literature. These are, (a) centralized trajectory joins, (b) distributed spatial
and multidimensional joins, and (c) distributed trajectory joins. Moreover
trajectory joins can be categorized in distance joins, k-nn joins and similarity
joins.

2.3.1 Distance Join

In [9] the effort focuses in identifying pairs of trajectories that move close
enough, with respect to a spatial threshold, during a user specified temporal
window, which is kind of limiting, since it might be of interest to identify
“matches” of different duration (at least δt) during the whole lifespan of the
datasets. Furthermore, in [9], no temporal tolerance is considered which
can lead in missing pairs of trajectories that move with some temporal
displacement. In [11], the authors try to solve the same problem in a
streaming environment. In [10] the authors extend their work by not binding
to the temporal dimension the interval in which two trajectories should move
“together”. Hence, all pairs of “matching” (with respect to a spatial threshold)
subtrajectories of exactly δt duration will be returned. This definition,
although more general, it still suffers from the rest of the aforementioned
problems. Moreover, in these approaches there is an assumption made, that
all trajectories have the same number of points which are synchronized.
However, an assumption like that is not realistic in real life scenarios and
supposes a preprocessing step that can be prohibitive when dealing with
Big Data. A slightly different definition is provided in [17] where the goal is
to identify all pairs of moving objects that, for some time intervals, move
closer than a given spatial threshold. Here, the duration of the “matches”
is not fixed. However, the trajectory join definition, here, is asymmetric
and time relaxation is not considered, so the distance between two objects
refers to their distance at the same time point t. Furthermore, the minimum
duration of the “matches” cannot be limited which can lead to pairs with very
small duration that might not be useful for some applications. Finally, the
solution provided is focused to an instantiation of the problem, called Window
Trajectory Distance Join, which limits the problem to a user-specified time

19



Chapter 2. Background

window.

2.3.2 k-nn Join

More specifically, [104] and [100] address the problem where given a refer-
ence trajectory and an integer k they want to discover the k most similar
trajectories to the reference trajectory. This is achieved by broadcasting the
input trajectory to all the nodes and calculating the LCSS distance. The
problem of k-nn join by using the MapReduce framework is tackled in [29].
More specifically, given two sets of trajectories R and M , an integer k and
a time interval [ts, te], the algorithms proposed there return the k nearest
neighbors from R for each object in M during this interval. In more detail, a
five step procedure (five MR jobs) is adopted where the data are reprocessed,
subtrajectories are extracted, the time dependent upper bound is computed,
candidates are found and the trajectories are joined. Similarly, in [100] given
a query trajectory they try to find the k most similar ones.

2.3.3 Similarity Join

A similar but different problem is the one of trajectory similarity join, where
the goal is to retrieve all pairs of trajectories that exceed a given similarity
threshold as in [88] and [22]. However, both of them return as a result pairs
of trajectories and not subtrajectories. An approach very similar to ours
is presented in [13], where, given a pair of trajectories they try to perform
partial matching, finding the most similar subtrajectories between these
two trajectories. Different variations of the problem are presented, where
the duration of the “match” is specified beforehand or not. Nevertheless,
the problem in [13] is not a join operation and temporal tolerance is not
considered. To sum up, all of the above approaches are centralized and
applying them to a parallel and distributed environment is non-trivial.

Recently, the algorithms proposed in [80, 81] find all pairs of network-
constrained trajectories that exceed a similarity threshold in a parallel
manner. However, the parallelization proposed there handles each trajectory
separately by assuming that all data need to be replicated for each trajectory,
which makes such a solution inapplicable to the Big Data setting. Finally,
these approaches (a) assume that the underlying network is known, which is
not something trivial in some domains (e.g., maritime or aviation) and (b)
work at the entire trajectories and cannot identify matching subtrajectories.

20



2.3. Joining Trajectories

2.3.4 Spatial & Multidimensional Joins

A special class of joins which is very relative to our problem is that of
spatial join. There have been several efforts to tackle this issue using the
MapReduce framework. In particular, [105], which is based on the traditional
PPBSM algorithm [64], partitions the input data into small evenly disjoint
tiles at Map stage and joins them at Reduce stage by further partitioning
the data into strips and performing a plane sweeping algorithm along with a
duplication avoidance technique. [105] uses no indexes and is a non-invasive
approach to the underlying system. Instead, it performs an in-memory
Reduce-side Join. As far as it concerns objects that intersect with more than
one partitions, these are replicated to each of the partitions that overlap
and proper care is taken in order to avoid duplicate results. Other works
that try to deal with the problem of spatial join by using the MapReduce
framework are presented in [84], [5], [26] and [77]. In more detail, [5] first
partitions the data by focusing on recursively breaking high density tiles into
smaller ones. Objects that exceed the borders of a partition are replicated
and a post-processing step is employed in order to eliminate duplicate results.
The join process takes place at the Reduce phase by utilizing the R*-Tree
indexes that are created and loaded in-memory at query time for each of
the relations. Another system that copes with the problem of spatial join
is [26]. This approach first re-partitions the data by taking into account
load balancing and spatial locality. In more detail the data are sampled
and an index (Grid File, R-Tree or R+-Tree) is created which will set the
boundaries of each partition. During, the re-partitioning phase global and
local indexes are created and stored in HDFS. The join takes place in the
Map phase by utilizing the local indexes. Concerning borderline objects, a
duplicate avoidance method is applied. An approach that enhances [26] with
the functionality of identifying closest pairs of points is presented in [34].

Multidimensional similarity join is also related to our work. In [87, 86]
the problem of distance range join is studied, which is probably the most
common case of similarity join. In this approach the data is iteratively
partitioned similarly to the Quickjoin algorithm [43], which results in having
multiple MR jobs in order to get the final results. The problem of high
dimensional similarity joins on massive datasets using MapReduce is tackled
in [54]. In [78] the problem of ε-distance similarity self-join on vector data
is tackled by employing in the Map phase a fixed size grid with cell width
ε and assign the data to the corresponding cells. In order to compute the
ε-neighborhood of each cell only the adjacent cells are needed. In order to

21



Chapter 2. Background

reduce the replication of data they avoid taking into account all the adjacent
cells. Despite this, the algorithm used to perform the join in the Reduce
phase is still a Nested Loop Join. [32] is an extension of [78] for medium- to
high-dimensional spaces where the full d-dimensional space is broken down
to k dimension groups, the join is performed in each group and then the
results are merged. Unlike [78], they try to cope with the skewness of data
by starting with a very fine grid and merging cells until a balanced grid is
created. Similarly to [78] the join process is still a Nested Loop Join.

2.4 Mining Mobility Data

In recent years, an increased research interest has been observed in knowledge
discovery out of mobility data. Towards this direction, several mining
methods have been proposed, which can be categorized to co-movement
pattern discovery, trajectory clustering, sequential patterns and periodic
patterns.

2.4.1 Co-movement Pattern Discovery

An interesting line of research includes works that aim to discover several
types of collective behavior among moving objects, forming a group of objects
that moves together for a certain time period. One of the first approaches in
this direction introduced the concept of flocks. A flock [48, 12, 96] in a time
interval I, where I spans for at least k successive timepoints, consists of at
least m objects, such that for every timepoint in I, there is a disk of radius r
that contains all m entities. If the objects change during the given interval,
a kind of varying-flock is formed. Based on this idea, the notion of a moving
cluster was introduced [45], which is a sequence of clusters c1, . . . , ck, such
that for each timestamp i, ci and ci+1 share a sufficient number of common
objects. An extension of the flocks pattern is the convoy pattern [44, 60] that
is a group of objects that has at least m objects, which are density-connected
with respect to a distance threshold e, during k consecutive timepoints.
However, trajectories of real-world moving objects may meet together at
some, nevertheless non-consecutive timepoints. To meet this real-world
requirement, a swarm[51] is a collection of moving objects with cardinality
at least m, that are part of the same cluster for at least k timepoints. It is
important to note that the k timestamps are not required to be consecutive.
The traveling companion [92] pattern is an approach for the online detection
of convoy and swarm patterns from trajectories that arrive as a stream to

22



2.4. Mining Mobility Data

the system. The gathering pattern [107, 108] relaxes the constraints of the
above-mentioned patterns by allowing the membership of a group to evolve
gradually. Each cluster of a gathering should contain at least p participators,
which are the objects appearing in at least c clusters of this gathering. The
gathering pattern is used to detect events, thus, it requires that the region
and its shape where the gathering takes place is more-or-less stable. Another
approach that relaxes the globally consecutive timestamp constraint is the
platoon pattern [50], which only requires that the timestamps are locally
consecutive. In other words, platoon patterns allow gap(s) in timestamps,
but the consecutive time segments must have a minimum length.

However, all of the aforementioned approaches are centralized and cannot
scale to massive datasets. In this direction, the problem of efficient convoy
discovery was studied both in centralized [60] and distributed environment
by employing the MapReduce programming model [59]. An approach that
defines a new generalized mobility pattern is presented in [28]. In more
detail, the general co-movement pattern (GCMP), is proposed, which models
various co-movement patterns in a unified way and is deployed on a modern
distributed platform (i.e., Apache Spark) to tackle the scalability issue.
Moreover, GCMP detector is implemented in UlTraMan [23], an efficient
platform for trajectory data management and analytics techniques. An
approach that tries to tackle the problem of generalized co-movement pattern
detection in an online fashion, on streaming trajectories, is proposed in [16],
by utilizing Apache Flink, which is designed for efficient distributed streaming
data processing.

Even though all of these approaches provide explicit definitions of several
mined patterns, their main limitation is that they search for specific collective
behaviors, defined by respective parameters. Furthermore, most of the afore-
mentioned approaches operate at specific predefined temporal “snapshots”
of the dataset, thus ignoring the route of each moving object between these
“snapshots”.

2.4.2 Trajectory Clustering

Another line of research, tries to discover groups of either entire or portions
of trajectories considering their routes. In [33], the authors proposed proba-
bilistic algorithms for clustering entire trajectories using a regression mixture
model. Subsequently, unsupervised learning is carried out by using EM
algorithm to determine the cluster memberships in the model. Except from

23



Chapter 2. Background

this probabilistic approach, researchers have followed two other directions.
The first transforms trajectories to a multi-dimensional space and then apply
well-known clustering algorithms such as k-means, BIRCH [106], CURE [38],
DBSCAN [27] and [8], which are tailored to work with point data, thus
applying them to trajectory data is not possible. Unfortunately, it has
been shown [56] that such an approach based on k-means and hierarchical
clustering algorithms leads to results of very poor quality.

9

Time

X axis

Y axis

Time

(a) Input dataset

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  50  100  150  200  250

R
ea

ch
ab

ili
ty

-d
is

ta
nc

e

OPTICS Objects order

Reachability plot

Epsilon = 24

(b) OPTICS Reach. plot

Fig. 2 A synthesized dataset (a) and the corresponding reachibility plot for OPTICS

6 Temporal Focusing

The approach to trajectory clustering presented above treats trajectories as unique, indivisi-
ble elements, and tries to group together those moving objects that globally move in a similar
way, ”smoothing” the effect of any sporadic divergence in their movement. However, such
global trajectory clustering may sometime be misleading and yield counter-intuitive results.
In particular, it might keep separated objects that moved together for a significant amount of
time, while gathering objects that constantly keep a significant distance between them.

From real world experience, we learnt that not all time intervals have the same impor-
tance. A meaningful example is urban traffic: in rush hours a large quantity of people move
from home to work and viceversa, or, more generally, from/to largely shared targets. There-
fore, we can expect that the sheer size of the population sample will make it possible for
groups of individuals having similar destinations to clearly emerge from traffic data to form
compact clusters. In quiet periods of the day, on the contrary, we expect to mainly observe
static individuals, whose distribution on the territory is more driven by the geographical pop-
ulation density than by collective motion behaviors. This is a general problem not limited to
urban traffic, and, while in this sample context some interesting hours of the day for cluster
analysis can be guessed – e.g., typical morning rush hours –, in other, less understood cases
and domains it might be not possible to fix a priori criteria for choosing the right period
of time. In these cases, some automatic mechanism to discover the most interesting inter-
vals of time should be applied. In what follows we formalize the problem mentioned above,
and suggest a solution. We anticipate that we will consider only single intervals of time in
our search problem, thus not taking into account more complex patterns of time, such as
periodical patterns or irregular sets of disjoint time intervals.

6.1 Problem setting

As discussed above, there may exist time segments where the clustering structure of our
moving objects dataset is clearer than just considering the whole trajectories. In order to
discover such clustering structure, then, we should provide a method for locating the right
time interval, and focus the clustering process on the segments of trajectories that lay in that
interval, ignoring the remaining parts.

Figure 2.3: An example of T-OPTICS result [56]: The algorithm is able to
separate four clusters (in black, green, blue, purple) as well as detect a few
outliers (in grey).

Alternatively, another approach is to define an appropriate similarity function
and embed it to an extensible clustering algorithm. In this direction, there
are several approaches whose goal is to group whole trajectories, including
T-OPTICS [56] (Figure 2.3), that incorporates a trajectory similarity func-
tion [31] into the OPTICS [8] algorithm. the vector field k-means trajectory
clustering technique [30] whose central idea is to use vector fields to induce a
notion of similarity between trajectories letting the vector fields themselves
define and represent each cluster. CenTR-I-FCM [67], a variant of Fuzzy
C-means, proposes a specialized similarity function that aims to tackle the
inherent uncertainty of trajectory data. Both of the last two approaches
propose specialized similarity functions having as goal to tackle the inherent
uncertainty of trajectory data. Lately, another entire-trajectory clustering
approach tackling uncertainty has been introduced in [42] where a pattern
mining framework has been proposed for discovering trajectory routes that
represent the frequent movement behaviors of a user. The approach exploits

24



2.4. Mining Mobility Data

on a similarity measure for trajectories with silent durations (i.e., the time
durations when no data points are available to describe the movements of
users). This is used in a clue-aware clustering algorithm, where clues are
some spatially and temporally close data points that capture certain com-
mon partial movement behaviors of the user. In [101] a multi-kernel-based
estimation process leverages both multiple structural information within
a trajectory and the local motion patterns across multiple trajectories in
order to address challenges in case of large variations within a cluster and
ambiguities across clusters. Another line of research identifies clusters of
trajectories [47] that move over a fixed network. However, this assumption
is valid only for vehicles moving in an urban environment.

A slightly different approach is the one of incremental trajectory clustering.
The “Trajectory Clustering using Micro- and Macro- clustering” (TCMM)
framework [53] is an incremental method that consists of two parts: (i)
online micro-cluster maintenance and (ii) offline macro-cluster creation. The
online part first simplifies trajectories by partitioning them into 2D line
segments to find the spatial clusters of subtrajectories; then, micro-clusters
of the partitioned trajectories are computed and maintained incrementally.
Micro-clusters hold and summarize similar trajectory partitions at very fine
granularity levels. The offline part performs macro-clustering on the set
of micro-clusters rather than on all trajectories when a user requests so.
The main characteristics of TCMM are: (i) TCMM maintains and operates
on summaries of trajectories (i.e. micro-clusters) only; (ii) TCMM applies
spatial clustering on directed line segments (using [49]); (iii) the partitioning
of the trajectories in TCMM is actually a simplification step taking place
per trajectory, i.e. without global criteria; (iv) TCMM targets at the entire
lifespan of the database so as to identify global patterns without temporal
constraints.

Nevertheless, trajectory clustering is a computationally intensive operation
and centralized solutions cannot scale to massive datasets. In this context, [21]
introduces a scalable GPU-based trajectory clustering approach which is
based on OPTICS [8]. Moreover, [79] attempts to identify frequent movement
patterns from the trajectories of moving objects. More specifically, they
propose a MapReduce approach by employing quadtree-based hierarchical
grid in order to discover complex patterns of different granularity. In [41]
the authors tackle the problem of parallel trajectory clustering by utilizing
the MapReduce programming model and Hadoop. They adopt an iterative
approach similar to k-means in order to identify a user-defined number of

25



Chapter 2. Background

clusters, which leads to a large number of MapReduce jobs.

Nonetheless, discovering clusters of complete trajectories can overlook sig-
nificant patterns that might exist only for portions of their lifespan. To
deal with this, another line of research has emerged, that of Subtrajectory
Clustering. The predominant approach here is TraClus [49] (Figure 2.4), a
partition-and-group framework for clustering 2D moving objects (i.e. TraClus
ignores the time dimension) that enables the discovery of common subtrajec-
tories. The algorithm first partitions trajectories to directed segments (i.e.,
subtrajectories) whenever the shape of a trajectory changes significantly, by
employing the minimum description length (MDL) principle. Subsequently,
the resulting subtrajectories are clustered by employing a modified version
of the DBSCAN algorithm, which is applicable to directed segments. Finally,
for each identified cluster the algorithm calculates a “fictional” representative
trajectory that best describes the corresponding cluster.

Figure 2.4: Overview of TRACLUS [71].

An alternative viewpoint to the problem of subtrajectory clustering is pre-
sented in [3], where the goal is to identify “common” portions between
trajectories, with respect to some constraints and/or objectives, cluster these
“common” subtrajectories and represent each cluster as a pathlet, which is
a point sequence that is not necessarily a subsequence of an actual trajec-
tory. A pathlet can be viewed as a portion of a path that is traversed by
many trajectories. In order to solve this problem, the authors in [3] prove
that this problem is NP-Hard and propose some approximation algorithms
with theoretical guarantees, concerning the quality of the solution and the
running time. Similarly, in [112] the goal is to identify corridors, which are

26



2.4. Mining Mobility Data

frequent routes traversed by a significant number of moving objects. As
already mentioned, all of the above subtrajectory clustering approaches are
centralized and cannot scale to the size of today’s trajectory data.

2.4.3 Sequential Pattern Discovery

Sequential pattern mining is an important data mining problem with broad
applications. Given a set of sequences, where each sequence consists of a
list of elements and each element consists of a set of items, and given a
user-specified min_support threshold, sequential pattern mining is to find all
frequent sub-sequences, i.e., the sub-sequences whose occurrence frequency
in the set of sequences is no less than min_support. Additionally, further
constraints may be integrated in the sequential pattern process to allow
finding more interesting patterns or to indicate more precisely the types of
pattern to be found (e.g., time constraints in between two consecutive items
in a pattern).

One such method follows the pattern-growth approach. In that the search
space is explored using a depth-first search, like in [15, 4]. It starts from
sequential patterns of length one and proceeds by recursively appending
items to patterns to create larger patterns (pattern-growth).

2.4.4 Data-driven predictive analytics

Predictive analytics is a scientific domain that aims at the extraction of
valuable knowledge from data and the utilization of it in order predict future
behavioural patterns and trends. When dealing with data that represent
the movement of objects, predictive analytics can be of great importance
since they can assist an analyst to predict events, such as collision prediction,
traffic prediction etc. Towards this direction there have been several efforts,
such as [95, 73, 74], that try to predict the future location of an object by
utilizing extracted mobility patterns from historical data.

27





Part IIIn-DBMS Centralized
Algorithms and Techniques

29





3 In-DBMS Sampling-based Subtra-
jectory Clustering

In this chapter, we propose an efficient in-DBMS solution for the problem of
subtrajectory clustering and outlier detection in large moving object datasets.
The method relies on a two-phase process: a voting-and-segmentation phase
that segments trajectories according to a local density criterion and trajec-
tory similarity criteria, followed by a sampling-and-clustering phase that
selects the most representative subtrajectories to be used as seeds for the
clustering process. Our proposal, called S2T-Clustering (for Sampling-based
SubTrajectory Clustering) is novel since it is the first, to our knowledge,
that addresses the pure spatiotemporal subtrajectory clustering and outlier
detection problem in a real-world setting (by ‘pure’ we mean that the en-
tire spatiotemporal information of trajectories is taken into consideration).
Moreover, our proposal can be efficiently registered as a database query
operator in the context of an extensible DBMS (namely, PostgreSQL in
our prototype implementation). The effectiveness and the efficiency of the
proposed algorithm are experimentally validated over synthetic and real-
world trajectory datasets, demonstrating that S2T-Clustering outperforms an
off-the-shelf in-DBMS solution using PostGIS by several orders of magnitude.
The original content of this chapter appears in [70].

3.1 Introduction

Knowledge discovery in mobility data [36, 72, 109, 102] exposes patterns of
moving objects exploitable in several fields. For instance, in both mature
(transportation, climatology, zoology, etc.) and emerging domains (e.g., mo-
bile social networks), scientists work with mobility-aware (mostly GPS-based)
data, resulting in trajectories of moving objects stored in MODs. Although
during the recent years, there have been made significant achievements in

31



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

the field [36, 72, 109, 102], ongoing research calls for new methods aiming at
deeper comprehension and analysis of mobility. For instance - and acting
as motivation of this work - enhancing MOD engines, such as Secondo [19]
and Hermes [66], with data mining operators is challenging [36, 72] and is
subject to the indexing extensibility interface of the corresponding ORDBMS
on which they are implemented (see GiST [40, 46], for example). In the
literature of trajectory-based mobility data mining, one can identify several
types of mining models used to describe various collective behavioral patterns.
As such, there exist works that identify various types of clusters of moving ob-
jects [33, 49, 56, 66] and variations [12, 44, 50, 107]. Related line of research
is the one that builds representatives out of a trajectory dataset, either by
generating artificial data [49, 67] or by sampling the dataset itself [68, 62].

Focusing on trajectory clustering, the majority of related work proposes a
variety of distance functions, utilized by well-known clustering algorithms to
identify collective behavior among whole trajectories [56, 67, 65]. A parallel
line of research tries to discover local patterns in MOD, i.e. patterns that are
alive only for a portion of moving objects’ lifespan: some of those techniques
simplify the given trajectories, however focusing on the spatial and ignoring
the temporal dimension, such as TRACLUS [49], which is considered as the
current state-of-the-art subtrajectory clustering technique.

Figure 3.1 illustrates a working example that motivates our research: a
dataset consisting of four trajectories, T1, . . . , T4. (In this figure, the time
dimension is ignored for visualization reasons.) Among the subtrajectories
that compose the dataset, our goal is to identify two clusters (in red and
blue, respectively) and five outliers (in black). In particular, the first (red)
cluster consists of the tails of trajectories T1, T2 and T3, the second (blue)
cluster consists of the main bodies of trajectories T1, T2, T3 and T4, while
the rest portions of the trajectories (namely, the tail of T4 and all four heads)
are recognized as outliers. Such clustering sounds impossible to be achieved
by TRACLUS. This is due to the inherent design of that algorithm that, as
delineated by the authors, discovers linear patterns only and fails to identify
complex (e.g., snake-like) patterns like the ones that appear in Figure 3.1.
In other words, when applied to this dataset, TRACLUS would eventually
discover five to six linear clusters (one new cluster each time the snake-like
motion changes direction). On the contrary, we wish to be able to follow
these direction changes without assuming underlying constraints on the
complexity of the shape of subtrajectories found nor posing geometrical and
temporal constraints, in terms of algorithm parameters, as those required

32



3.1. Introduction

 

T
2
 

T
3
 T

4
 

T
1
 

(a)

 

T
2
 

T
3
 T

4
 

T
1
 

(b)

Figure 3.1: (a) a set of 4 trajectories; (b) the set split in 2 clusters (in red
and blue) and 5 outliers (in black).

by related work, e.g., [12, 44]. For those having experimented with those
techniques, parameters like disc radius, minimum duration and cardinality
of patterns, are hard to be set in advance. For instance, a small detour of
an object belonging to one of the clusters, would probably result in either
the lack of those patterns or the formation of smaller ones. Inspired by the
above, in this chapter we study an important problem in the mobility data
management and exploration domain [72], that of subtrajectory clustering
and outlier detection. Informally, we aim at a methodology that builds
clusters around (and detects outliers far away from) appropriately selected
subtrajectories that preserve the properties and the mobility patterns hidden
in a MOD, as much as possible. Towards this goal, we introduce a novel
clustering methodology exploiting on the voting, segmentation and sampling
concepts proposed in [62]. More specifically, we devise an efficient voting
process that allows us to describe the ‘representativeness’ of a trajectory in a
MOD as a smooth continuous descriptor [62]. Using these descriptors (their
‘representativeness’), we result in the automatic segmentation of trajectories
into ‘homogeneous’ subtrajectories. Next, a deterministic sampling proce-
dure selects only those subtrajectories that optimally describe the entire
MOD. Finally, we devise a method for subtrajectory clustering driven by the

33



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

aforementioned representative sample of subtrajectories.

The design of such a clustering methodology is subject to two indispensible
requirements that challenged our research: we seek for (a) an efficient and
scalable solution that (b) should be able to operate on a real-world DBMS
rather than being an ad-hoc implementation using a sophisticated access
method. This is in order for the proposal to be practical and useful in real-
world application scenarios, where concurrency and recovery issues are taken
into consideration. Both requirements call for a MOD engine; therefore, our
proposal is implemented as a query operator in Hermes [1], implemented on
top of PostgreSQL. To our knowledge, it is the first time in the literature that
GiST is used to index trajectory-based mobility data for the above purposes.
Therefore, we argue that this is an important step towards bridging the
gap between MOD management and mobility data mining, as state-of-art
approaches [52, 99, 35] could make use of the efficiency and the advantage of
our proposal to execute in-DBMS clustering via simple SQL. Our contribution
is summarized below:

• we formulate the problem of subtrajectory clustering (and outlier
detection) in a MOD as an optimization problem;

• we propose an efficient solution, the so-called S2T-Clustering algorithm,
driven by a deterministic sampling methodology, with the number of
clusters being automatically detected by the algorithm;

• in order to speed up clustering tasks in MOD systems, we implement
S2T-Clustering as a query operator over an extensible DBMS, namely
PostgreSQL, based on access methods that exploit on the GiST indexing
extensibility interface. (For validation purposes, we also implement
S2T-Clustering using PostGIS, an off-the-shelf in-DBMS alternative
solution.)

The rest of the chapter is organized as follows: Section 3.2 formulates the
problem of subtrajectory clustering (and outlier detection). Sections 3.3
and 3.4 present our proposal and its in-DBMS realization, respectively.
Experimental results that evaluate S2T-Clustering using synthetic and real
trajectory datasets from urban and vessel traffic domains are provided in
Section 3.5. Section 3.6 concludes the chapter.

34



3.2. Problem Formulation

3.2 Problem Formulation

Let D = T1, T2, . . . , TN be a dataset consisting of N trajectories of moving
objects (we assume that the objects move in the xy-plane). Let pk,i =
(xk,i, yk,i, tk,i) be the i-th sampled point, i ∈ 1, 2, . . . , Lk of trajectory Tk,
k ∈ 1, 2, . . . , N , where Lk denotes the length of Tk (i.e. the number of points
it consists of), the pair (xk,i, yk,i) and tk,i denote the 2D location and the time
coordinate of point pk,i, respectively. We consider linear interpolation between
two successive sampled points, pk,i and pk,i+1, so that each trajectory turns
out to be a sequence of 3D line segments, ek,i = (pk,i, pk,i+1), of cardinality
Lk−1, where each segment represents the continuous movement of the object
during sampled points. Table 3.1 summarizes the definitions of the symbols
used in this chapter.

Table 3.1: Table of Symbols used in Chapter 3

Symbol Definition
D A dataset, D = T1, . . . , TN , of N trajectories
Tk k-th trajectory of D
pk,i i-th point of trajectory Tk, pk,i = (xk,i, yk,i, tk,i)
Lk Number of points forming trajectory Tk
ek,i i-th (3D) line segment of Tk, ek,i = (pk,i, pk,i+1)
LPk Number of subtrajectories partitioning Tk
Pk Set of the subtrajectories partitioning Tk
Pk,i i-th subtrajectory of trajectory Tk
P Set of subtrajectories in dataset D, P = ∪Pk
Vk Voting descriptor of trajectory Tk
V Set of voting descriptors in dataset D, V = ∪Vk
V Pk,i Voting descriptor of subtrajectory Pk,i
Nlk,i Normalized lifespan descriptor of subtrajectory Pk,i w.r.t.

lifespan of Tk
C Clustering of subtrajectories in M clusters,

C = C1, . . . , CM , Ci ⊂ P , Ci ∩ Cj = Ø, i 6= j

S Sampling set of representatives, S = R1, . . . , RM , S ⊂ P ,
with subtrajectory Rj representing cluster Cj

M Cardinality of C (and S)
SR(S) Representativeness function of S
V (Pk,i, Rk,i) Voting descriptor of Pk,i ∈ P − S w.r.t. subtrajectory

Rj ∈ S
Out Set of outlier subtrajectories, Out = P − C

Informally, the objective of subtrajectory clustering is to partition trajectories

35



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

into subtrajectories and then form groups of similar ones, while at the
same time, separating those that cannot fit in a group (called outliers).
However, searching for entire trajectory similarity may be misleading since
real-world trajectories may be long and consisting of heterogeneous portions
of movement [24]. On the other hand, clustering at the subtrajectory level
sounds much more effective.

Rephrasing the previous discussion, if we consider trajectory Tk as a se-
quence of successive subtrajectories Pk,i of arbitrary length (Pk,i is the i-th
subtrajectory of trajectory Tk), the objective of subtrajectory clustering (and
outlier detection) is to partition subtrajectories into groups of similar ones
and isolate the ones (called outliers) that are very dissimilar from the others.
To achieve this, assuming a cluster is represented by its representative (or
centroid) subtrajectory, we define clustering as an optimization problem
where the optimization criterion is to maximize the following expression:

SRD =
∑
∀Rj∈S

∑
∀Pk,i∈C(Rj)

V (Pk,i, Rj) (3.1)

The formula to be maximized, namely Sum of Representativeness of Dataset
(SRD), uses set S = {R1, . . . , RM} of the representative subtrajectories and
the corresponding clusters C(Rj) built around them, and is calculated upon
V (Pk,i, Rj), i.e. the mean similarity (or average number of votes, according
to our terminology) of subtrajectory Pk,i with respect to Rj . Given the above
formulation, the problem in hand is formalized as follows:

Problem 3.1. (subtrajectory clustering in a MOD): Assuming a dataset
D = T1, T2, . . . , TN consisting of N trajectories, where each of them is con-
sidered as a sequence Pk of successive subtrajectories of arbitrary length, the
problem of subtrajectory clustering is defined as the task of partitioning the
set P = ∪Pk of subtrajectories into (i) a clustering C = {C1, . . . , CM} of M
clusters, Ci ⊂ P , Ci∩Cj = Ø, i 6= j (i.e. hard clustering), where each cluster
is represented by its representative subtrajectory Rj ∈ P , j = 1, . . . ,M , and
(ii) a set Out of outliers, by maximizing Equation 3.1.

It is important to note that maximizing Equation 3.1 is not trivial at all
since one has to define, among others, (i) the criterion according to which a
trajectory is segmented into subtrajectories, (ii) the technique for selecting
the set of the most representative subtrajectories, (iii) whose cardinality M
is unknown, to name but a few challenging sub-problems.

36



3.3. The S2T-Clustering Algorithm

3.3 The S2T-Clustering Algorithm

In this section, we propose a solution for Problem 3.1 defined above, which
is called S2T-Clustering (for Sampling-based subtrajectory Clustering). Our
proposal (listed in Algorithm 3.1) consists of two phases: first, we apply the
so-called Neighborhood-aware Trajectory Segmentation (aka NaTS) method
that is able to detect homogenized subtrajectories applying trajectory voting
and segmentation; then, we apply the so-called Sampling, Clustering, and
Outlier detection (aka SaCO) method that selects the most representative
among the subtrajectories detected in the previous phase in order for them
to serve as the seeds of the clusters to be produced.

Algorithm 3.1 S2T-Clustering
1: Input: trajectory dataset D = {T1, T2, . . . , TN}, voting influence σ,

threshold ε
2: Output: sampling set S, clustering C, set of outliers Out.
// initialization phase

3: Reset set V of voting descriptors in D
// NaTS phase (Neighborhood-aware Trajectory Segmenta-
tion)

4: for each trajectory Tk ∈ D do
5: Update set V of voting descriptors in D w.r.t. Tk and σ
6: Partition Tk in set Pk of subtrajectories w.r.t. Vk
// SaCO phase (Sampling, Clustering, and Outlier detection)

7: Find sampling set S consisting of the M most representative subtrajec-
tories

8: Using set S and threshold ε, partition P = ∪Pk in a set C of M clusters
and a set Out of outliers

9: return (S,C,Out)

It is important to note that the number M of representatives (hence, the
number of clusters) is not user-defined; rather, it is the algorithm that esti-
mates it (in Line 7). As for parameters σ and ε that appear in Algorithm 3.1
(Line 5 and Line 8, respectively), σ controls how fast the voting influence de-
creases with distance, whereas ε acts as a lower bound threshold of similarity
between representative and non-representative subtrajectories, thus deciding
whether a (non-representative) subtrajectory will be flagged as outlier or not.
These parameters will be explained in detail in the subsections that follow.

37



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

3.3.1 NaTS: Neighborhood-aware Trajectory Segmentation

We extend the concept of density-biased sampling (DBS), which was origi-
nally proposed for point datasets [45], to be applied to trajectory segments.
According to DBS, the local density for each point of a set is approximated
by the number of points in a surrounding region, divided by the volume of
the region. In our case, adopting a voting process of trajectories in a MOD
as defined in [62], we define the representativeness of a 3D trajectory segment
ek,i of a given trajectory Tk to be the number of ‘votes’ this segment collects
from other trajectories with respect to their mutual distance. The overall
voting collected by a segment (a value ranging from 0 to N) has the physical
meaning of the number of other trajectories that co-exist with the trajectory
that segment belongs to, both spatially and temporally. Intuitively, the
voting results can be post-processed in order for us to be able to identify
homogeneous (with respect to representativeness) subtrajectories.

Formally, let Vk be the voting trajectory descriptor along the line segments
of Tk, consisting of a series of Lk−1 components. Each component Vk,i of
this vector corresponds to the number of votes (“representativeness” value)
that segment ek,i, i ∈ {1, . . . , Lk−1}, collected by the segments of the other
trajectories. This representativeness value is based on a distance function
d(ek,i, ej) between two line segments ek,i and ej , k 6= j. This distance function
is defined as the definite integral of the time-varying distance Dj(t) between
the two segments during their common lifespan [tj,start, tj,end), following the
approach proposed in [31]:

d(ek,i, ej) =
∫ tj,end

tj,start

Dj(t)dt (3.2)

As Dj follows a trinomial, this integral is efficiently approximated by the
Trapezoid Rule:

(Dj(tj,start) +Dj(tj,end)) · (tj,start − tj,end)/2

and can be computed in O(1), as it has been already proved in [31].

Given the above distance function, the representativeness value is provided
by the following voting function.

38



3.3. The S2T-Clustering Algorithm

V (ek,i, ej) = e−
d2(ek,i,ej)

2·σ2 (3.3)

As already mentioned, parameter σ > 0 controls the “voting influence”, i.e.
how fast V (ek,i, ej) decreases with distance. It also holds that V (ek,i, ej)
is bounded in [0, 1]: it gets value 1 when the distance of the two segments
is zero (i.e. the segments are identical) while very high distance results in
voting value close to zero.

After the voting process takes place, the trajectory segmentation process
gets into action. The goal of this step is to partition each trajectory into
homogeneous representativeness subtrajectories, irrespectively of their shape
complexity (recall the discussion about the snake-like trajectories in Fig-
ure 3.1). In order to perform neighbourhood-aware trajectory segmentation,
we adopt the Trajectory Segmentation Algorithm (TSA), proposed in [62]. In
other words, the result of the voting process is given as input to TSA, which
provides as output the subtrajectories along with their voting descriptors.
More technically, let Pk,i, i ∈ {1, . . . , LPk}, be the i-th subtrajectory of
Tk, where LPk denotes the number of partitions of Tk. Then, V Pk,i is the
voting descriptor formed by the representativeness values of the segments
that belong to Pk,i. In other words, V Pk,i shows how many trajectories find
themselves to be similar to Pk,i. The interested reader is referred to [62] for
the technical details of TSA.

Back to the example of Figure 3.1, the NaTS phase results in segmenting
trajectory T1 into three subtrajectories (coloured red, blue, and black, re-
spectively, in Figure 3.1(b)); similar for the other trajectories of the dataset.
Thus, the overall result of this phase consists of 12 subtrajectories along with
their voting descriptors.

3.3.2 SaCO: Sampling, Clustering, and Outlier detection

As already mentioned, trajectory segmentation aims to provide homogeneous
subtrajectories according to their representativeness, i.e. with respect to
their local similarity with other trajectories. On the other hand, the goal of
subtrajectory clustering is to partition the dataset into groups (clusters) of
similar subtrajectories. Therefore, in our proposal, we first select the appro-
priate sampling set S and then tackle the problem of clustering according to
the following idea (quite popular, also in traditional data clustering): each

39



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

subtrajectory in the sampling set is considered to be a representative around
which a cluster will be formed. So, our goal is that the sampling set should
contain highly voted trajectories of the MOD which, at the same time, would
cover the 3D space occupied by the entire dataset as much as possible in
order for Equation 3.1 to be maximized.

In order to achieve this goal, we propose the sampling to be done by maxi-
mizing a formula (see Equation 3.4) that would take into account the votes
V Pk,i collected by each subtrajectory. Formally, let S denote the sampling
set, so that Sk,i is one, if subtrajectory Pk,i belongs to the sampling set, and
zero otherwise. According to the previous discussion, the number of subtra-
jectories that are represented in the sampling set S, should be maximized.
This is formalized in Equations 3.4-3.6.

SR(S) =
N∑
k=1

LPk∑
i=1

Sk,i · SRgain(k, i) (3.4)

where

SRgain(k, i) =
|Pk,i|∑
j=1

V PPk,i,j ·Nlk,i,j · (1− V PSk,i,j) (3.5)

Nlk,i,j = lifespan(ek,i,j)/lifespanTk (3.6)

More precisely, SRgain(k, i) expresses the gain in SR(S) if we add Pk,i in S,
|Pk,i| denotes the number of line segments of Pk,i, V PPk,i,j and V PSk,i,j denote
the votes in P and the votes in S, respectively, of the j-th line segment of Pk,i
and are calculated according to Equation 3.3. As for Nlk,i, it denotes the
normalized lifespan descriptor of subtrajectory Pk,i with respect to lifespan
of Tk, namely Nlk,i,j is the fraction of the duration of the j-th line segment
of Pk,i with respect to whole lifespan of Tk.

For this purpose, we follow the ideas included in the subtrajectory Sampling
Algorithm (SSA), proposed in [62]. However, SSA is not appropriate for an
efficient in-DBMS solution, which is one of our main objectives. Thus, we
keep the main characteristics of the algorithm and adapt it in order to meet
our specifications (described in detail in Section 3.4.2). In principle, the input
of sampling algorithm is the set P of all subtrajectories Pk, the set voting
V Pk,i and the normalized lifespan Nlk,i vectors of these subtrajectories,
all provided by the NaTS phase. The output of the sampling step is the

40



3.3. The S2T-Clustering Algorithm

subtrajectory sampling set S consisting of M samples. Back to the example
of Figure 3.1, this step results in selecting two subtrajectories (samples), one
out of the three red and one out of the four blue subtrajectories.

As already mentioned, the population M of the samples is not user-defined;
in contrary, it is dynamically estimated by SSA algorithm. As such, it
provides a deterministic solution, in contrast to other probabilistic [45, 57]
or user-supervised, explorative sampling techniques [7].

What follows is the clustering step, which takes into account the sampling
set S and the vector of votes (i.e. representativeness) V (Pk,i, Rj) between,
on the one hand, the non-representative Pk,i ∈ P −S and, on the other hand,
the representative subtrajectories Rj ∈ S. Technically, V (Pk,i, Rj) consists
of |Pk,i| elements, where each element represents the voting that takes place
between the segments of Pk,i and Rj . As illustrated in Equation 3.1, we use
the mean value (V (Pk,i, Rj)) of the vector values V (Pk,i, Rj). Each of those
values is computed by measuring the distance of the corresponding segment
of Pk,i from its nearest to Rj and then by applying the voting function of
Equation 3.3. Thus, it holds that 0 ≤ (V (Pk,i, Rj)) ≤ 1.

Concluding the discussion about Algorithm 3.1, in order to find the clusters
that maximize Equation 3.1, the subtrajectories that are assigned to cluster
C(Rj) represented by subtrajectory Rj ∈ S, are the ones that fulfil the
following property:

C(Rj) = {Pk,i ∈ P − S : (V (Pk,i, Rj)) ≥ (V (Pk,i, Rv))
∀Rv ∈ S ∧ (V (Pk,i, Rj)) ≥ ε}

(3.7)

and

C = ∪C(Rj) (3.8)

On the other hand, the subtrajectories that are considered outliers (thus
forming the outliers set Out) are those failing to be assigned to a cluster,
formally:

Out = P − C (3.9)

41



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

As already discussed, parameter ε controls how far from a representative a
non-representative should be positioned in order for the latter to be flagged
as outlier. Back to the example of Figure 3.1, the clustering process presented
above results in two clusters, formed around the red and the blue, respectively,
representative subtrajectory found in the sampling step. As a side effect, the
black subtrajectories are left out of the two clusters, thus they are flagged as
outliers.

3.4 S2T-Clustering In-DBMS

In this section, we present our methodology for the efficient in-DBMS devel-
opment of S2T-Clustering algorithm proposed in Section 3.3.

3.4.1 NaTS in-DBMS

NaTS phase of S2T-Clustering algorithm (Lines 4-6 in Algorithm 3.1) consists
of two steps: (a) voting among trajectory segments and (b) trajectory
segmentation based on the resulted voting descriptors. An efficient in-DBMS
solution should focus on the voting step (Lines 4-5), since TSA [62] that
implements the segmentation step (Line 6) poses no special challenges; it is
an efficient in-memory algorithm applied only on the voting descriptor of a
single trajectory.

Back to the voting step, to meet its requirement we need an algorithm that
takes as input a dataset D = T1, T2, . . . , TN of trajectories, a trajectory
Tk ∈ D and σ > 0 parameter, and provides as output a voting descriptor
(vector) Vk consisting of Lk−1 components, each corresponding to segment ek,i,
i ∈ {1, . . . , Lk−1}, of trajectory Tk. For efficiency purposes, [62] implemented
the demanding voting process by using an incremental nearest neighbour
(INN) algorithm. However, given the specifications posed in the introduction
of this chapter, INN is not a choice due to the fact that the access methods
supported by real ORDBMS (e.g., the GiST interface in PostgreSQL) do not
support the incremental paradigm. This implies that, in our case, we are
directed to queries natively supported by ORDBMS, such as typical range
and NN queries.

Let us now discuss the design and implementation options we have in-
DBMS. Dataset D corresponds to a relation with tuples in the form <

t_id, s_id, ek,i >, where t_id (s_id) is the trajectory (segment, respectively)

42



3.4. S2T-Clustering In-DBMS

identifier and ek,i corresponds to the 3D segment, upon which a 3D-R-tree
index is built. Nevertheless, this setting is straight-forwardly realized in
the well-known PostGIS spatial extension of PostgreSQL using 3D GiST.
(Note, however, that PostGIS handles time dimension as simply as a (third)
z-spatial dimension, next to x- and y- dimensions.) An important issue
has also to do with the realization of Equation 3.3 that provides the voting
between two segments: theoretically, a segment may vote (though close to
zero) even if it is found very far from the target segment. However, this is
not realistic in DBMS implementations. As such, we introduce s_buffer, a
spatial threshold for distance between two segments, above which there is no
need to calculate this distance. In the case where the application user has
limited knowledge about space-time properties of the dataset, this parameter
can be tuned to be the maximum value resulting in a very low (close to
zero) voting as computed by Equation 3.3. This is achieved as follows: by
reversing Equation 3.3, we obtain Equation 3.10 that defines an upper bound
for s_buffer.

d ≤
√
−2σ2 · ln(ε) (3.10)

Thus, d values higher than the upper bound set in Equation 3.10 are not
expected to contribute to the quality of the clustering.

Given the above setting, voting can be implemented using at least two alter-
natives, called Baseline-I and Baseline-II, respectively. Baseline-I solution
performs Σk(Lk−1) range queries in the 3D-R-tree, where each query window
corresponds to the MBB of a segment, enlarged by s_buffer; hence, the total
number of range queries equals to the total number of segments in D, a fact
that turns this solution to be expensive in disk accesses. On the other hand,
Baseline-II solution performs N range queries in the 3D-R-tree, where each
query window corresponds to the MBB of a trajectory, again enlarged by
s_buffer; hence, the total number of range queries equals to the number of
trajectories in D. Obviously, the second solution is much cheaper in disk
accesses regarding the index but, unfortunately, imposes a heavy refinement
step because of the volume of the trajectory MBB. Anyway, both approaches
need a refinement step to calculate voting descriptor Vk,i, which involves
distance calculations.

In the following paragraphs, we present an alternative (third) approach
for addressing the voting step, which is the most demanding step in S2T-

43



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

Clustering algorithm and, as such, it needs special care. In particular, we
follow a filter-and-refinement approach that utilizes a range-like query, called
Trajectory Buffer Query (TBQ). TBQ takes as input a trajectory, enlarges
it by s_buffer, and returns the segments that overlap with the sequence of
the enlarged MBBs of the trajectory’s segments. The TBQ rationale is to
efficiently retrieve those segments in D that are “around” a given trajectory,
where “around” is defined by s_buffer. Figure 3.2 illustrates the Trajectory
Buffer TBk of a trajectory Tk.

 

Figure 3.2: The Trajectory Buffer TBk (i.e. the sequence of the blue MBBs)
of a trajectory Tk.

It is obvious that our proposal follows a trajectory-based approach (i.e.
similar to the Baseline-II technique), but for each trajectory it minimizes
the filtering step by diminishing the dead space of the query, and thus
minimizes the expensive refinement step. In turn, this implies changing the
default search strategy of the 3D-R-tree over GiST that will reduce the time
needed to compare a node entry with the trajectory buffer that is passed as
predicate to the index. This is achieved by the Consistent method of the GiST
extensibility interface [40], which contains the comparison logic between an
index node entry of GiST and the trajectory buffer. Algorithm 3.2 outlines
TBQ whereas Algorithm 3.3 presents the adapted Consistent method of the
GiST interface.

Algorithm 3.2 Trajectory Buffer Query (TBQ)
1: Input: pg3D-R-tree root, trajectory Tk, parameter s_buffer.
2: Output: set of segments that overlap with TBk.
3: TBk ← TrajectoryBuffer(Tk, s_buffer)
4: root.depth-first-search(Consistent, TBk)

Recall that Consistent decides whether the depth-first search should visit
a child of the current entry or not (if the entry belongs to a non-leaf node)
or, in case the entry belongs to a leaf node, checks whether to return the

44



3.4. S2T-Clustering In-DBMS

Algorithm 3.3 Consistent
1: Input: Trajectory Buffer TBk, current index entry E.
2: Output: Boolean.
3: if E is in a leaf node then
4: if MBB(E.segment) overlaps MBB(TBk) then
5: for each MBBi ∈ TBk do
6: if E.segment overlaps MBBi then
7: return true
8: else
9: if E.box overlaps MBB(TBk) then

10: for each MBBi ∈ TBk do
11: if E.box overlaps MBBi then
12: return true
13: return false

segment pointed by the leaf entry. After this remark, the depth-first search
driven by Consistent in Algorithm 3.3 is easy to be followed: Consistent
returns true if the MBB of the entry overlaps with one of the MBBs forming
the trajectory buffer TBk (Lines 7 and 12, for leaf and non-leaf nodes,
respectively). Before this check takes place, a brute filtering is applied by
checking whether the MBB of the entry overlaps the entire MBB of TBk
(Lines 4 and 9, respectively).

3.4.2 SaCO in-DBMS

In this section, we discuss the in-DBMS development of SaCO, i.e. the second
phase of S2T-Clustering. SaCO phase (Lines 7–8 in Algorithm 3.1) also
consists of two steps: (a) sampling of the most representative subtrajectories
(Line 7) and (b) clustering around samples and outlier detection (Line 8).

Regarding the sampling step, we adopt the SSA algorithm [62] as a starting
point and we improve it with two crucial modifications, focusing on the
efficiency and the quality, respectively, of the samples selected. The first
improvement is that the voting method that is inherent in the sampling
process follows the much more efficient approach presented earlier rather
than the one presented in [62]. The second modification is about the selection
of an even better set of representatives; as proposed in [62], SSA selects
representatives as long as (a) the top-k number of representatives is less than
a user-defined threshold (i.e. parameter M that acts as an upper bound for
the selected representatives) and (b) the optimization criterion is satisfied (see

45



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

Equations 3.4 and 3.5). In fact, SSA selects the highly voted subtrajectories,
while at the same time it tries to penalize subtrajectories that are very close
to already selected representatives. Sometimes this automatic penalization
fails, resulting to very similar representatives. In contrast, in our case, as the
representatives are employed as cluster pivots, when a new representative is
selected, it is further examined whether it is similar with one of the already
selected representatives. In such a case, it is not selected and the algorithm
evaluates the next candidate subtrajectory. The similarity criterion is the
same with the one adopted for the clustering, i.e. Equation 3.7.

What follows is the final step, that of clustering and outlier detection. For
this purpose, we follow an index-based, greedy approach that takes advantage
of the TBQ query, which is applied on the results of the SSA algorithm,
so as to form clusters around the sampled subtrajectories. To this end,
we propose the so-called Subtrajectory Clustering Algorithm (SCA). SCA,
listed in Algorithm 3.4, receives as input set P of subtrajectories, set S of
representatives, as it was produced by the (modified) SSA, and threshold
parameter ε. The output of the method is the final result of S2T-Clustering,
i.e. sets C and Out, with the clusters and outliers, respectively.

Algorithm 3.4 SCA
1: Input: set P of subtrajectories, set S of representatives, parameter ε.
2: Output: set C of clusters, set Out of outliers.
3: Out = P − S
4: for each Rj ∈ S do
5: Cj ← {Rj}
6: for each Rj ∈ S do
7: TBQj ← TBQ(Out,Rj , s_buffer)
8: for each ej,f ∈ Rj do
9: TBQj,f ← overlaps(TBQj , extend(ej,f , s_buffer))

10: for each Pk,i ∈ {TBQj,f}, f ∈ [1, |Rj|] do
11: V ← V (Pk, i, Rj)
12: if v > ε and v > old_vk,i then
13: Cj ← Cj ∪ {Pk,i}
14: flag Pk,i as clustered in Out
15: old_vk,i ← v
16: for each Pk,i ∈ Out do
17: if Pk,i is flagged as clustered then
18: Out← Out− {Pk,i};
19: return (C,Out)

Initially, the subtrajectories are organized in two sets (implemented as

46



3.5. Experimental Study

relations in DBMS), one containing the sampling set sorted by the order
of their selection and the other containing the remaining data, while each
cluster is initialized by a representative subtrajectory from the sampling
set. As such, each representative subtrajectory constitutes the first member
(seed) of the corresponding cluster (Lines 3-5). Then, we apply a two-step
filtering procedure so as to increase the efficiency of the algorithm. At the
first step, for each cluster seed Rj , we apply a TBQ query, which returns
the segments that are “close” to the cluster seed (Line 7). Subsequently,
for each segment ej,f belonging to the specific representative Rj , we apply
a spatiotemporal range query with the same spatial component as that of
the TBQ query (Line 9). This spatiotemporal range query is performed in
order to identify the segments that are “close enough” to ej,f and, hence,
qualify to proceed to the voting procedure with respect to Rj . Subsequently,
for each non-clustered Pk,i, we calculate the average voting that Rj receives
(Line 11). By taking into account parameter ε discussed earlier, we assign it
to cluster Cj mastered by Rj (Line 13) and mark it as clustered (Line 14).
Through this process, in the case where Pk,i belongs to the result of more
than one TBQ searches, it is assigned to the representative that has achieved
the highest voting.

3.5 Experimental Study

In this section, we present the results of our experimental study. All ex-
periments were conducted on an Intel Xeon X5675 Processor 3.06GHz with
48GB memory, running on Debian Release 7.0 (wheezy) 64-bit. The proposed
algorithms were implemented on top of a PostgreSQL 9.4 server with the
default configuration for its memory parameters. We should clarify that
in our implementation, which exploits on the extensibility interface given
by PostgreSQL, we have defined and implemented from scratch datatypes
and operands conforming to the whole discussion so far, resulting in the
so-called Hermes@PostgreSQL [1], which is completely independent from
PostGIS. This implies that the 3D-R-tree has also been implemented from
scratch (on top of GiST); we call it pg3D-R-tree (see the input of TBQ in
Algorithm 3.2).

A notable difference of our pg3D-R-tree from the PostGIS implementation
of the 3D-R-tree is that, in our case, the entries of the leaf nodes are 3D
segments rather than 3D boxes. This is an implicit assumption in the
Consistent algorithm (see e.g., Line 4 in Algorithm 3.3), which allows us

47



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

to avoid additional I/O operations. The outline of our experimental study
is as follows: First, we study the robustness of S2T-Clustering by using a
synthetic dataset (where we know the ground truth) in order to (a) evaluate
the sensitivity of our proposal with respect to various parameters and (b)
validate whether our approach succeeds to discover the underlying clusters
(and outliers). Then, a set of experiments is performed in order to evaluate
the efficiency and scalability of S2T-Clustering. These experiments are
performed using three different approaches: the two baseline solutions and
our solution based on TBQ, as they were presented in Section 3.4.

3.5.1 Datasets

For our experimental study we utilize the datasets SMOD, IMIS1 and GeoLife
that were presented in Section 1.5. Table 3.2 presents the statistics of the
three datasets.

Table 3.2: Dataset Statistics

Statistic SMOD GeoLife IMIS1
# Trajectories 400 18668 5110
# Segments 35273 24159325 444570

Dataset Duration
(hh:mm:ss)

0:02:00 1932 days 22:59:48 6 days 19:59:53

Avg. Sampling Rate
(hh:mm:ss)

0:00:01 0:00:08 0:18:02

Avg. Segment Length
(m)

8 72 1545

Avg. Segment Speed
(m/s)

7.83 5.01 7.03

Avg. Trajectory Speed
(m/s)

2.86 3.91 4.52

Avg. # Points per
Trajectory

89 1295 88

Avg. Trajectory
Duration (hh:mm:ss)

0:01:28 2:43:15 11:33:45

Avg. Trajectory Length
(m)

691 93046 134,148

As already mentioned, SMOD is used for the ground truth verification. In
more detail, the ground truth of the clusters that are hidden in SMOD can be
inferred by the description of the dataset itself. In particular, eight clusters of

48



3.5. Experimental Study

subtrajectories (as well as a set of outliers) are identified. Table 3.3 lists the
eight clusters along with their spatial (2nd column) and temporal projection
(3rd column).

Table 3.3: The ground truth hidden in SMOD

Cluster Path Time periods (clusters)
#1,#2 A→ B [0, 0.2], [0.2, 0.7]
#3,#4 B → C [0.2, 0.8], [0.7, 1.2]
#5,#6 B → D [0.2, 0.52], [0.7, 1.2]
#7 C → B [0.8, 1]
#8 D → C [0.52, 1]

3.5.2 Quality of Clustering Analysis

In this section, we perform a sensitivity analysis in order to explore the
effect on the quality of clustering when setting different values on certain
parameters. The quality of the clustering is calculated through two different
measures: QMeasure [49] and SRD (see Equation 3.1). We should mention
that the lower the QMeasure the higher the quality; on the other hand, the
higher the SRD the higher the quality. Regarding parameter settings, as
our approach shares similar concepts with the sampling methodology of [62],
we followed the best practices presented in that work. More specifically,
parameter σ was set to 0.1% of the dataset diameter while ε was set to 10−3.
Regarding s_buffer, it was automatically set according to Equation 3.10 as
default value and we experimented with values around the default.

The first set of experiments is about the sensitivity of S2T-Clustering with
respect to s_buffer. Figure 3.3 illustrates the results over the IMIS1 dataset.
In particular, we used the default value (labelled 100% in the x-axis of the
charts) as well as 6 values around it (labelled 40%, 60%, 80%, 120%, 140%,
160%). As one can easily observe, the quality of the clustering, measured
either by QMeasure or SRD, remains more or less stable and follows the
trend of the number of clusters identified. Moreover, in both QMeasure and
SRD, the best quality appears when s_buffer is set to its default value (d).

We repeated the same experiment over GeoLife and resulted in similar
conclusions. Considering the above analysis, the value for s_buffer used in
the remainder of our experimental study is the default value provided by
Equation 3.10.

49



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

0.00E+00

5.00E+28

1.00E+29

1.50E+29

40% 60% 80% 100% 120% 140% 160%

Q
M

e
as

u
re

% default value

IMIS

(a)

0

100

200

300

400

500

40% 60% 80% 100% 120% 140% 160%

SR
D

% default value

IMIS

(b)

0

100

200

300

400

500

40% 60% 80% 100% 120% 140% 160%

# 
O

f 
C

lu
st

e
rs

% default value

IMIS

(c)

Figure 3.3: The effect on (a) QMeasure, (b) SRD, (c) the discovered number
of clusters, when varying s_buffer parameter around its default value.

In a second set of experiments, we applied our proposal to the SMOD dataset,
which is ideal for the purposes of testing the quality of our algorithm. In
order to measure the stability of our method to noise effects, we have added
Gaussian white noise of different Signal to Noise Ratio (SNR) levels, measured
in db, to the spatial coordinates of SMOD. All the subsequent experiments
have been repeated with SNR = 30db and SNR = 50db and the results were
the same. Therefore, we present only the case with the SNR =30db.

First, we applied both S2T-Clustering and TRACLUS [49] over a subset of
SMOD that consists only of the trajectories that move throughout the whole
lifespan of the dataset, thus limiting the ground truth to two clusters. In
Figure 3.4(a) and Figure 3.4(c) we visualize only the representatives of each
cluster, while in Figure 3.4(b) we provide a 3D illustration of the data used
in the case of Figure 3.4(a). Note that S2T-Clustering discovers the two
clusters, while TRACLUS discovers several linear patterns; see Figure 3.4(a)
vs. Figure 3.4(c).

Subsequently, we applied both S2T-Clustering and TRACLUS to the entire
SMOD, for which we have knowledge of the ground truth. In Figure 3.5(a) and
Figure 3.5(c), we present the results of the S2T-Clustering and TRACLUS,
respectively. Moreover, in order to better comprehend the temporal dynamics

50



3.5. Experimental Study

 

(a)

 

(b)

 

(c)

Figure 3.4: Visualization of the clusters’ representatives provided by: S2T-
Clustering in (a) 2D and (b) 3D, (c) TRACLUS, when applied to a subset
of SMOD consisting of 2 patterns.

51



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

 

(a)

 

(b)

 

(c)

Figure 3.5: Visualization of the clusters’ representatives provided by: S2T-
Clustering in (a) 2D and (b) 3D, (c) TRACLUS, when applied to the entire
SMOD consisting of 8 patterns.

52



3.5. Experimental Study

of the dataset we provide a 3D illustration in Figure 3.5(b). According to
this experiment, S2T-Clustering effectively discovers all eight clusters (as well
as the noisy subtrajectories, depicted in black color in Figure 3.5(b)), thus
S2T-Clustering is not affected by the trajectories’ shape, yielding an effective
and robust approach for the discovery of linear and non-linear patterns. On
the contrary, TRACLUS fails to identify the hidden ground truth in this
SMOD due to the fact that it ignores the time dimension. Interestingly,
TRACLUS discovers almost the same sets of representatives when applied
to either a subset of or the entire SMOD; see Figure 3.4(c) vs. Figure 3.5(c).

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8

F-
M

ea
su

re

# of Clusters

F-Measure

SMOD with outliers SMOD without outliers

Figure 3.6: Quality of S2T-Clustering w.r.t. number of clusters.

In order to evaluate the accuracy of our proposal in a quantified way, we
further employed F-Measure in SMOD. In detail, we built 8 datasets, with
the first consisting of the subtrajectories of the first cluster only, the second
consisting of the subtrajectories of the first and the second cluster only, and so
on, until the eighth dataset, which consisted of the subtrajectories of all eight
clusters; all eight datasets appeared in two variations: including or not the
set of outliers. For each dataset, we applied S2T-Clustering and calculated
F-Measure; Figure 3.6 illustrates this quality criterion by increasing the
number of clusters. It is evident that S2T-Clustering turns out to be very
robust, achieving always precision and recall values over 92.3%, while the
outliers are always detected correctly.

3.5.3 Efficiency and Scalability

In order to study the efficiency and scalability of our proposal we followed
two competing approaches: Hermes@PostgreSQL [1], implemented according
to the discussion in Section 3.4, vs. PostGIS extension of PostgreSQL
that simulated the two baseline solutions presented in Section 3.4.1. We
have noticed that the implementation of the 3D-R-tree in PostGIS suffers

53



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

from rounding errors because it uses 32-bit IEEE floating-point numbers to
store the coordinates [2]. In our experiments we observed that the MBB
of a trajectory or a segment was always enlarged due to this rounding,
thus making the overlap query in PostGIS return more segments than
our implementation. Since this made the comparison between the two
systems unfair, we simulated PostGIS inside Hermes, in other words, also the
baseline solutions were simulated inside Hermes (thus, making all solutions
run under the same framework). In the charts that follow, we denote the
implementation of Baseline-I and Baseline-II solutions implemented both in
Hermes and in PostGIS as Hermes | PostGIS-Baseline-I | II, i.e. four different
implementations. In particular, Figure 3.7 illustrates the execution time of
the voting step for the IMIS1 dataset when varying the dataset size (i.e. the
number of trajectories). Obviously, the two implementations present similar
performance, with the PostGIS implementation performing slightly better
mainly due to the fact that the size of index node entries in PostGIS (which
uses 32-bit numbers for storing the temporal dimension) is slightly less than
that of Hermes (which uses 64-bit numbers).

0

500

1000

1500

2000

2500

3000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
(i

n
 s

e
co

n
d

s)

Percentage of Dataset

Imis Voting

Hermes-Baseline-I PostGIS-Baseline-I

(a)

0

20

40

60

80

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
(i

n
 s

e
co

n
d

s)

Percentage of Dataset

Imis Voting

Hermes-Baseline-II PostGIS-Baseline-II

(b)

Figure 3.7: Comparing the performance of baseline solutions: (a) Baseline-I;
(b) Baseline-II.

We repeated the same experiment with the GeoLife dataset and the results
lead to similar conclusions, thus they are excluded due to space limitations.
Based on the above results, in the remainder of the experimental study,
the scalability study is conducted using the Hermes implementation of the
algorithms. As illustrated in Figure 3.8(b), all three approaches (Baseline-
I, Baseline-II and TBQ, presented in Section 3.4.1) perform similarly on
the IMIS1 dataset as far as it concerns the segmentation, sampling and
clustering steps of the algorithm (please note that y-axis is at log scale). The
crucial difference is at the expensive voting step, where TBQ significantly
outperforms the two baseline solutions by almost two orders of magnitude;

54



3.6. Summary

this is illustrated in Figure 3.8(a) whereas in Figure 3.8(c) we present the
accumulated processing time. Due to the fact that the overall performance
is dominated by the performance of the voting step, we further studied
this step over the GeoLife dataset. As it can be observed in Figure 3.8(d),
the behavior of the voting step of S2T-Clustering over GeoLife is slightly
different from that over IMIS1. TBQ still outperforms both Baseline-I and
Baseline-II solutions by several orders of magnitude, but in the case of
GeoLife, Baseline-II outperforms Baseline-I. This can be explained by the
fact that GeoLife consists of trajectories with significantly larger number
of segments than IMIS1 (recall the statistics in Table 3.2). This fact leads
Baseline-I to perform considerably more lookups in the index.

3.6 Summary

In this chapter, we discussed the problem of subtrajectory clustering and
outlier detection in trajectory databases, aiming to take both space and time
information into consideration. In particular, we proposed S2T-Clustering
that is novel not only because it solves the problem more effectively than
the state-of-the-art (namely, TRACLUS), but also for an additional, quite
important reason: our proposal is designed in-DBMS, i.e., it performs as
a query operator in a real MOD engine over an extensible DBMS (namely,
PostgreSQL in our current implementation). Having such functionality in
their hands, data scientists are able to perform cluster analysis via simple
SQL in real DBMS, where concurrency and recovery issues are taken into
consideration. Moreover, our algorithm is boosted by an efficient index-based
Trajectory Buffer Query (TBQ) that speeds up the overall process, resulting
in a scalable solution, outperforming the state-of-the-art in-DBMS solutions
supported by PostGIS by several orders of magnitude.

55



Chapter 3. In-DBMS Sampling-based Subtrajectory Clustering

0

2

4

6

8

10

12

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

lo
g)

Percentage of Dataset

IMIS Voting

TBQ Hermes-Baseline-I Hermes-Baseline-II

(a)

0.00E+00

2.00E+02

4.00E+02

6.00E+02

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Percentage of Dataset
Hermes-Baseline-II - Clustering Hermes-Baseline-II - Sampling
Hermes-Baseline-II - Segmentation Hermes-Baseline-I -Clustering
Hermes-Baseline-I -Sampling Hermes-Baseline-I -Segmentation

(b)

0

2

4

6

8

10

12

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

lo
g)

Percentage of Dataset

IMIS Overall

TBQ Hermes-Baseline-I Hermes-Baseline-II

(c)

0

5

10

15

20

10% 100%Ex
e

cu
ti

o
n

 T
im

e
 (

lo
g)

Percentage of Dataset

GeoLife Voting

TBQ Hermes-Baseline-I Hermes-Baseline-II

(d)

Figure 3.8: Step-by-step execution time of S2T-Clustering: (a) voting over
IMIS1; (b) segmentation/sampling/clustering over IMIS1; (c) overall over
IMIS1; (d) voting over GeoLife.

56



4 Temporal-constrained Subtrajec-
tory Cluster Analysis

Finding a solution to the above described subtrajectory clustering problem
is challenging; An even more challenging problem, than that of subtrajectory
clustering, is how one can support incremental and progressive cluster analy-
sis in the context of dynamic applications, where (i) new trajectories arrive
at frequent rates, and (ii) the analysis is performed over different portions
of the dataset, which might be repeated several times per analysis task.
Towards this direction, in this chapter, we study the temporal-constrained
subtrajectory cluster analysis problem, where the aim is to discover clusters
of subtrajectories given an ad-hoc, user-specified temporal constraint within
the dataset’s lifetime. The problem is challenging because: (a) the time
window is not known in advance, instead it is specified at query time, and
(b) the MOD is continuously updated with new trajectories. To address this
problem, we propose an incremental and scalable solution to the problem,
which is built upon a novel indexing structure, called Representative Tra-
jectory Tree (ReTraTree). ReTraTree acts as an effective spatio-temporal
partitioning technique; partitions in ReTraTree correspond to groupings of
subtrajectories, which are incrementally maintained and assigned to represen-
tative (sub-)trajectories. Due to the proposed organization of subtrajectories,
the problem under study can be efficiently solved as simply as executing a
query operator on ReTraTree, while insertion of new trajectories is supported.
Our extensive experimental study performed on real and synthetic datasets
shows that our approach outperforms a state-of-the-art in-DBMS solution
supported by PostgreSQL by orders of magnitude. The original content of
this chapter appears in [69].

57



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

4.1 Introduction

Nowadays, huge volumes of location data are available due to the rapid
growth of positioning devices (GPS-enabled smartphones, on-board naviga-
tion systems in vehicles, vessels and planes, smart chips for animals, etc.).
This explosion of data already contributes in what is called the Big Data era,
raising new challenges for the mobility data management and exploration
field [35, 72].

Efficient and scalable trajectory cluster analysis is one of these challenges [109,
102]. The research so far has focused on adapting well-known solutions that
are effective for legacy data types to trajectory datasets. Thus, a typical
approach is to transform trajectories to multi-dimensional (usually, point)
data, in order for well-known clustering algorithms to be applicable. For
instance, CenTR-I-FCM [67] builds upon a Fuzzy C-Means variant. Another
approach is to focus on effective and efficient trajectory similarity search,
which is the basic building block of every clustering approach. Once one has
defined an effective similarity metric, she can adapt well-known algorithms
to tackle the problem. For instance, TOPTICS [56] adapts OPTICS [8] to
enable whole-trajectory clustering (i.e. clustering the entire trajectories), and
TRACLUS [49] exploits on DBSCAN [27] to support subtrajectory clustering.

Subtrajectory clustering is a typical cluster analysis problem in Moving
Object Databases (MOD). Recall Figure 3.1, i.e. a dataset consisting of four
trajectories, T1, . . . , T4 (please note that the time dimension has been ignored
for visualization reasons). Upon this dataset, the goal of subtrajectory cluster
analysis is to identify two clusters (coloured red and blue, respectively) and
five outliers (coloured black).

Finding a solution to the above described subtrajectory clustering problem is
challenging; what is even more challenging, is how one can support incremen-
tal and progressive cluster analysis in the context of dynamic applications,
where (i) new trajectories arrive at frequent rates, and (ii) the analysis is
performed over different portions of the dataset, and this might be repeated
several times per analysis task.

As motivational example, consider the Location-based Services (LBS) scenario
where LBS users transmit their trajectories to a central LBS server, e.g., when
their trip is completed. From the server side, a MOD system is responsible for
organizing user traces, aiming to support extensive (usually incremental and
explorative) querying and mining processes. Since users (the data producers)

58



4.1. Introduction

transmit their location information in batch mode and asynchronously, the
underlying data management framework should be able to handle this kind
of information transmission. In other words, as we are especially interested
in cluster analysis, the data server should be able to cluster users’ trajectories
in an incremental fashion. Clearly, the above techniques fail to meet such a
specification.

Coming back to the example of Figure 3.1, two main challenges need to be
confronted: (i) given the addition of a new trajectory in the existing set of
four trajectories, how can cluster analysis be performed over the updated data
without applying the (quite expensive) clustering process from scratch, and
(ii) how could we organize these trajectories so as to retrieve clusters valid in
an ad-hoc temporal period of interest, without re-applying the clustering for
the user-defined temporal period? In this chapter, we address the challenge
of efficient and effective temporal-constrained subtrajectory cluster analysis,
by proposing an incremental and progressive solution to the problem. To this
end, we propose a novel indexing scheme for large MODs, which is designed
upon optimally selected samples of subtrajectories, called Representative
Trajectories, hence the term ReTraTree. Each subtrajectory of this type acts
as the representative of a group (cluster) of subtrajectories. Thus, ReTraTree
may be considered as a data structure that organizes (sub-)trajectories in a
hierarchical fashion, while having small, but in any case adaptable, memory
footprint. Based on its design, ReTraTree is able to incrementally partition
and cluster trajectories as they are inserted in the MOD. Interestingly, the
actual clustering process for the user-defined temporal period of interest,
called Query-based Trajectory Clustering (QuT-Clustering), is performed as
simply as a query execution upon the ReTraTree.

The contributions of our work are summarized below:

• we introduce the temporal-constrained subtrajectory cluster analysis
problem, which is a key problem for supporting progressive clustering
analysis;

• we design ReTraTree, an efficient indexing scheme for large dynamic
MODs, which is based on representative trajectories found in the
dataset;

• as a solution to the problem of study, we devise QuT-Clustering, a
subtrajectory clustering algorithm running as simply as a query operator
upon ReTraTree;

59



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

• we facilitate incremental trajectory cluster analysis by exploiting the
incremental maintenance of ReTraTree along with the query-based
clustering approach of QuT-Clustering;

• we perform an extensive experimental study upon real and synthetic
datasets, which demonstrates that our in-DBMS implementation out-
performs a state-of-the-art PostgreSQL extension by several orders of
magnitude.

The rest of the chapter is organized as follows: Section 4.2 formally defines
the problem of temporally-constrained subtrajectory cluster analysis. Sec-
tion 4.3 presents the ReTraTree structure and its maintenance algorithms
while Section 4.4 puts ReTraTree in action, in other words it provides the
QuT-Clustering algorithm, also providing a complexity analysis of the en-
tire framework. Section 4.5 presents our experimental study. Section 4.6
concludes the chapter and outlines future research directions.

4.2 Problem Setting

In this section, we provide the necessary definitions and terminology. Table 4.1
summarizes the definitions of the symbols used in the chapter.

Definition 4.1. (Voting between segments of two trajectories): Given two
segments e and e′ belonging to trajectories T and T ′, respectively, the vot-
ing function V (e, e′) that calculates the voting e receives by e′ is given by
Equation 4.1:

V (e, e′) = e−
d2(e,e′)

2·σ2 (4.1)

where the control parameter σ > 0 shows how fast the function (“voting
influence”) decreases with distance.

Since Euclidean distance D(t) is symmetric, distance d(e, e′) is symmetric
as well. As such, it holds that V (e, e′) = V (e′, e); it also holds that 0 ≤
V (e, e′) ≤ 1. If the two segments are almost identical, i.e. distance d(e, e′) is
close to zero, the voting function gets value close to 1. On the other hand,
high values of distance d(e, e′) result in voting close to zero.

We can generalize the above discussion to define the representativeness of a

60



4.2. Problem Setting

Table 4.1: Table of Symbols used in Chapter 4

Symbol Definition
D A dataset, D = T1, . . . , TN , of N trajectories
T A trajectory of D, whose length is |T| (in terms of number

of points composing it)
xt.s(xt.e) Starting (ending) timestamp of the time-varying object x,

e.g., Tt.s (Tt.e) is the minimum (maximum) timestamp of
trajectory T

l Lifespan of D, namely the temporal period
[min(Tt.s),max(T ′t.e)), ∀T , T ′ ∈ D

pi i-th (3D) point of trajectory T , pi = (xi, yi, ti)
ei i-th (3D) line segment of T , ei = (pi, pi+1)
li Lifespan of line segment ei, namely the temporal period

[ti, ti+1)
S Set of subtrajectories partitioning trajectory T
Si i-th subtrajectory of trajectory T
V (e, e′) Voting function between two segments e and e′ belonging

to trajectories T and T ′, respectively
V T ′
T Voting descriptor of trajectory T with respect to T ′
V T
D Voting descriptor of trajectory D with respect to trajectory

dataset T
V D
T Voting descriptor of trajectory T with respect to trajectory

dataset D
V D′
D Voting descriptor of trajectory dataset D with respect to

trajectory dataset D′
R Sample of representative subtrajectories R = R1, . . . , RM
C Clustering of subtrajectories in M clusters,

C = {CR1 , . . . , CRM }, Ci ⊂ P , CRi ∩ CRj = Ø, i 6= j, with
subtrajectory Ri representing cluster CRi of subtrajectories

M Cardinality of C (and R)
Out Set of outlier subtrajectories
W The user-defined time window (W ∈ l) for which we want

to discover the subtrajectory clusters

61



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

trajectory with respect to another trajectory. Notice that the definition that
follows is applicable to subtrajectories as well (since a subtrajectory is itself
a trajectory, essentially a set of consecutive segments).

Definition 4.2. (Voting descriptor and average voting of a trajectory with
respect to another trajectory): Given a trajectory T of length |T | and another
trajectory T ′, the voting descriptor V T ′

T of T with respect to T ′ is a vector

V T ′
T : (V (e1, ∗), . . . , V (e|T |−1, ∗)) (4.2)

of dimensionality |T | − 1 where wildcard ‘*’ corresponds to the segment of T ′

that minimizes distance d(ei, ·), i = 1, . . . , |T | − 1. By avg(V T ′
T ) we denote

the average of the values of the vector V T ′
T of trajectory T with respect to

trajectory T ′.

Obviously, the voting descriptor is not symmetric, i.e. V T ′
T 6= V T

T ′ .

Definition 4.3. (Voting descriptor of a trajectory with respect to a trajectory
dataset): Given a trajectory dataset D and a trajectory T of cardinality |T |,
T 6∈ D, the voting descriptor V D

T of T with respect to D is a vector

V D
T : (

∑
T ′∈D

V (e1, ∗), . . . ,
∑
T ′∈D

V (e|T |−1, ∗)) (4.3)

of dimensionality |T | − 1 where wildcard ‘*’ corresponds to the segment of
each T ′ in D that minimizes distance d(ei, ·), i = 1, . . . , |T | − 1.

Recall that (i) the vote a segment can receive by another segment is a value
ranging from 0 to 1, according to Equation 4.1, and (ii) only one segment
from each trajectory votes for a given segment of another trajectory, i.e. its
nearest. This implies that the total voting - the sum of votes - received by a
given segment is a value ranging from 0 (if all members of D vote 0) to N
(if all members of D vote 1). To exemplify the above, back to the example
of Figure 3.1, voting descriptor V {T2,T3,T4}

T1
presents in general higher values

than voting descriptor V {T1,T2,T3}
T4

since T1 is more centrally located than T4
in the dataset.

Definition 4.4. (Voting of a trajectory dataset with respect to a trajectory):
Given a trajectory dataset D of cardinality N and a trajectory T of cardinality
|T |, T 6∈ D, voting V T

D of D with respect to T is a value

62



4.2. Problem Setting

V T
D =

∑
T ′∈D

avg(V T
T ′) (4.4)

that accumulates the average voting of all trajectories T ′ ∈ D with respect to
T .

Definition 4.5. (Voting of a trajectory dataset with respect to another
trajectory dataset): Given a trajectory dataset D of cardinality N and another
(reference) trajectory dataset D′ of cardinality N ′, D ∩D′ = Ø voting V D′

D

of D with respect to D′ is a value calculated as follows:

V D′
D =

∑
T∈D′

avg(V T
D ) (4.5)

Now, we define the temporally-constrained subtrajectory clustering problem
that we address in this chapter. Let W represent a time window within the
lifespan of D, i.e. W ∈ l. Further, let DW denote the set of subtrajectories
partitioning the trajectories in D, which are temporal-constrained within W .
Formally:

Problem 4.1. (Temporal-constrained subtrajectory clustering): Given (i)
a trajectory database D = T1, . . . , TN of lifespan l, consisting of N trajecto-
ries of moving objects, and (ii) a time window W (W ∈ l), the temporal-
constrained subtrajectory clustering problem is to find: (a) a set C =
{CR1 , . . . , CRM } of M clusters of subtrajectories, CRi ∈ DW , i = 1, . . . ,M ,
around respective subtrajectories R = {R1, . . . , RM}, Ri ∈ CRi, i = 1, . . . ,,
called representative subtrajectories, and (b) a set Out of outlier subtrajecto-
ries, Out ∈ DW , so that voting V R

DW−R of dataset DW −R with respect to R
is maximized:

(R,C,Out) = argmax(V R
DW−R) (4.6)

The above problem is quite challenging, for a number of reasons. First, the
segmentation (or partitioning) of trajectories found in D in subtrajectories
cannot be predefined nor is the result of a third-party trajectory segmentation
algorithm, such as [14, 49, 53]. Instead, it is problem-driven: it is the
clustering algorithm that solves the above problem that is responsible to
find the best segmentation of trajectories into subtrajectories. Practically,
it is the clustering algorithm that is responsible to detect the red and blue

63



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

parts of trajectories in Figure 3.1, given that the analyst requires a clustering
providing as time window W the whole lifespan of the dataset. Second, the
optimization of the above scenario is a hard problem, since the solution space
is huge. Third, one has to define the technique for selecting the set of the
most representative subtrajectories, whose cardinalityM is unknown. Fourth,
as already discussed, in a real MOD setting, the solution should support
incremental updates. Put differently, data updates should be accommodated
as soon as they come and update the existing clusters at low cost, instead
of performing a new clustering process from scratch. Finally and most
importantly, since clustering is applied over different portions of the dataset,
and this might be repeated several times per analysis task, the solution to the
problem should be repeatable for all the different time windows W that are
of interest during explorative analysis. This comprises a novel feature and
a major contribution of our work, since existing solutions for subtrajectory
clustering are not able to support progressive clustering analysis taking into
account temporal constraints as filters.

4.3 The ReTraTree Indexing Scheme

We start this section with an overview of the ReTraTree indexing scheme
(Section 4.3.1) and we continue with the algorithms that are necessary for
its maintenance (Sections 4.3.2 – 4.3.4).

4.3.1 ReTraTree Overview

ReTraTree consists of four levels: the two upper levels operate on the temporal
dimension while the 3rd level is built upon the spatiotemporal characteristics
of the trajectories. The idea is to hierarchically partition the time domain by
first segmenting trajectories into subtrajectories according to fixed equi-sized
disjoint temporal periods, called chunks (1st level partitioning). Then, each
chunk is organized into sub-chunks, which form a partitioning of subtrajecto-
ries within each chunk (2nd level partitioning). Notice that sub-chunks may
overlap in time, i.e. they are not temporally disjoint.

Example 4.1. Figure 4.1 illustrates six trajectories, T1, . . . , T6 spanning in
two days (called Day 1 and Day 2). The dataset is split into two chunks
at day-level, with mauve (green) colored subtrajectories corresponding to the
evolution of moving objects on Day 1 (Day 2, respectively). Furthermore, the
chunk corresponding to Day 1 is subdivided to two sub-chunks, corresponding

64



4.3. The ReTraTree Indexing Scheme

 

  

y 

  

t 

x 

  

T
1
 T

3
 T

4
 T

1
 

Day 1 

  

T
5
 T

3
 T

4
 T

2

2 

 Day 2 
     

T
6
 

Figure 4.1: Six trajectories, spanning in 2 days, split into daily chunks.

to < T1, T2, T3, T4 > and < T5, T6 >, respectively. Although not illustrated
in the figure, the first sub-chunk is valid during [20:00, 0:00) of Day 1 while
the second sub-chunk is valid during [22:00, 0:00) of Day 1, thus they are
overlapping in time. Especially for the first sub-chunk, we also illustrate the
projection of the four trajectories on the spatial domain, which corresponds
to Figure 3.1(b).

Next, the subtrajectories of each sub-chunk are clustered on the spatiotem-
poral domain with a sampling-based algorithm. In the previous example,
this step results in the formation of two clusters of subtrajectories (in red
and blue) and five outlier subtrajectories (in black), see Figure 3.1(b). Thus,
ReTraTree maintains only the representatives at the 3rd level of the structure,
while the actual clustered data are archived at the 4th level.

Figure 4.2 (and the paragraphs that follow) present ReTraTree in detail.
Note that the top-three levels of the ReTraTree reside in main memory and
only the 4th level is disk-resident.

1st level (chunks). The root of the ReTraTree consists of p entries, p ≥ 1,
corresponding to chunks sorted by time (in the example of Figure 4.1, at daily
level). Note that for each chunk Hi , i = 1, . . . , p, there is no need to maintain
the actual temporal periods in the index nodes since they correspond to fixed
equal-length splitting intervals. Each entry Hi maintains only a pointer to
the respective set of sub-chunks Hi,n, n ≥ 1, under this chunk. The set of all

65



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Out 

R 

Di,n 

1st level 

chunks 

2nd level 

sub-chunks 

3rd level 

cluster 

representatives 

4th level 

raw trajectory 

data 

H1 H2 … Hi … Hp 

Hi,1 Hi,2 … 

• • • • • • 

𝐶𝑅1   

𝐶𝑅2   

T1  𝐶𝑅1  

 T2  𝐶𝑅1  

 T3  𝐶𝑅1  

 T4  𝐶𝑅2  

 T5  𝐶𝑅2  

 

O1  

O2  

3D-R-

tree 

Input 

Trajectory 

Hi 

 

H 

m
e
m

o
ry

 
d

is
k

 

Figure 4.2: Overview of the ReTraTree indexing scheme.

chunks forms the 1st level of the structure.

2nd level (sub-chunks). For each chunk, there is a set of sub-chunks,
actually a sequence of triples < Hi,n.per,Hi,n.R,Hi,n.Out >, n ≥ 1, where
per is a temporal period [pert.s, pert.e) when the sub-chunk is valid (in
the example of Figure 4.1, [20:00, 0:00) and [22:00, 0:00), respectively for
the two sub-chunks of Day 1), while R (Out) are pointers to the set of
representative (outlier, respectively) subtrajectories belonging to sub-chunk
Hi,n. The sequence of triplets is ordered by < pert.s, pert.e >. The set of
all sets of sub-chunks forms the 2nd level of the structure.

3rd level (cluster representatives). For each sub-chunk, the entries
of set R consist of pairs < Rj , CRj >, j ≥ 0, where each entry includes
the representative subtrajectory Rj and a pointer CRj to the subset of
subtrajectories belonging to that sub-chunk and forming a cluster around Rj .
Note that j = 0 implies that there may exist sub-chunks with zero clusters
(i.e. including outliers only). The set of all sets of cluster representatives
(along with the pointers to actual data) forms the 3rd level of the structure.

66



4.3. The ReTraTree Indexing Scheme

4th level (raw trajectory data and outliers). The sets of actual sub-
trajectories that compose clusters CRj are stored at the 4th level of the
structure. For each sub-chunk Hi,n, there corresponds a set Di,n consisting
of triples <subtrajectory-id, CRj , subtrajectory-3D-polyline> that keep the
information about which subtrajectory belongs to which cluster. On the
other hand, set Out contains the outlier subtrajectories of that sub-chunk.
The outlier subtrajectories are appropriately indexed in a 3D-R-tree struc-
ture [94]. The clustering process of subtrajectories belonging to a sub-chunk,
during which we detect sets S and Out, is a key process for ReTraTree and
is described in detail in Section 4.3.3.

How ReTraTree handles a new trajectory is discussed in the subsections that
follow.

4.3.2 Hierarchical Temporal Partitioning

Given a trajectory database D of lifespan l (whose duration is denoted as
|l|), a new trajectory T , and a fixed partitioning granularity p, applicable at
the ReTraTree 1st level, T is partitioned into a number of subtrajectories Si,
i ≥ 1, where the subtrajectory Si is the restriction of T inside a temporal
period pi,

pi = [ |l|·(i−1)
p , |l|·(i)p ) , 1 ≤ i ≤ p

where |l|/p is the length of each time interval (i.e. the duration of the lifespan
of each chunk) and timestamps Dt.s + |l| ∗ (i − 1)/p, 2 ≤ i ≤ p are called
splitting timestamps. As such, every trajectory in the dataset is partitioned
into subtrajectories using the same (pre-defined, according to granularity
p) splitting timestamps. This chunking process is applied incrementally,
whenever a batch of new recordings from a moving object arrives. In case of
a new trajectory with temporal information that exceeds the last existing
chunk, a new chunk is created and the set of chunks CK is extended.

At the 2nd level, each chunk is subdivided into (possibly, overlapping)
sub-chunks. Specifically, a chunk is split into sub-chunks by grouping the
subtrajectories contained in the chunk, according to the following definition.

Definition 4.6. (Grouping of subtrajectories in the same sub-chunk): Given
a temporal tolerance parameter τ and two subtrajectories S ∈ T and S′ ∈ T ′

belonging to the same chunk, these subtrajectories can be grouped together in

67



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

the same sub-chunk if their starting (ending) timepoints differ at most τ/2,
respectively. Formally, it should hold that:

|St.s − S′t.s| ≤ τ/2 ∧ |St.e − S′t.e| ≤ τ/2 (4.7)

Note that the above definition is not deterministic as there might be a
subtrajectory S′′ ∈ T ′′ that also satisfies this condition. We handle this
case by grouping the subtrajectories when this condition is satisfied for the
first time. Thus, we do not define and we do not search for a kind of “best-
matching” sub-chunk. The reasons for this choice is that we are in favor
of a very efficient insertion process, while we do not care about an optimal
matching as this issue will be handled when the analyst asks for a clustering
analysis. Regarding tolerance parameter τ , it is a user-defined parameter
and can be exploited to impose an either stricter or looser notion of grouping.
It also implies that e.g., when τ is set to 10 minutes, a subtrajectory of less
than 20 minutes duration cannot be grouped together with a subtrajectory
of more than 30 minutes duration.

4.3.3 Sampling-based Subtrajectory Clustering

As already mentioned in Section 4.2, maximizing Equation 4.6 is a hard
problem. In order to tackle it, we adopt a methodology for the optimal
segmentation and selection of a sample of subtrajectories from a trajec-
tory dataset. Thus, in Algorithm 4.1, we outline the Sampling-based Sub-
Trajectory Clustering (S2T-Clustering) algorithm, a two-step process that
relies on a subtrajectory sampling method, proposed in [62]. Briefly, S2T-
Clustering relies on the output of the aforementioned sampling method (1st
step), which is a set of subtrajectories in the MOD that can be considered
as representatives of the entire dataset. These samples serve as the seeds of
the clusters, around which clusters are formed based on a greedy clustering
algorithm (2nd step).

Algorithm 4.1 S2T-Clustering
1: Input: MOD D = {T1, T2, . . . , TN}, ε, δ
2: Output: Sampling set R, Clustering C, Outlier set Out.
3: (R,S)← Sampling(D, ε)
4: (C,Out)← GreedyClustering(R,S, δ)
5: return (R,C,Out)

68



4.3. The ReTraTree Indexing Scheme

The first step of S2T-Clustering algorithm (line 3) invokes the Sampling
method, which aims to solve an optimization problem, namely to maximize
the number of subtrajectories represented in a sampling set. In a few words,
Sampling calculates the voting descriptor V D

T of all trajectories T in D with
respect to D, as described in Definition 4.3. Then, based on this signal,
each trajectory is partitioned into subtrajectories having homogeneous repre-
sentativeness (i.e. the representativeness of all segments in a subtrajectory
does not deviate over a user-defined threshold), irrespectively of their shape
complexity. According to [62], a trajectory should have at least w points in
order for the segmentation to take place. Thus, w is an application-based
parameter of Sampling that acts as a lower bound of the length of a tra-
jectory under segmentation. Subsequently, Sampling selects a sampling set
R = {R1, . . . , RM} of subtrajectories, which are hereafter considered as the
representatives of D. Note that the number M of subtrajectories is not
user-defined; instead, it is dynamically calculated by the method itself. This
is achieved by tuning Sampling with a parameter ε (ε > 0 and ε→ 0), the role
of which is to terminate the internal iterative optimization process when the
optimization formula is lower than a given threshold (i.e. the ε parameter).
Back to the example of Figure 3.1, the above voting-and-segmentation phase
would result in segmenting trajectory T1 into three subtrajectories (coloured
red, blue, and black, respectively, in Figure 3.1) according to its represen-
tativeness; similar for the rest trajectories of the MOD.) Then, Sampling
would intuitively select two subtrajectories as representatives, one from the
blue subtrajectories, and one from the red subtrajectories.

At its second step (line 4), S2T-Clustering uses sampling set R in order to
cluster the subtrajectories of the dataset according to the following idea: each
subtrajectory in the sampling set is considered to be a cluster representative.
More specifically, clustering is performed by taking into account sampling set
R = {R1, . . . , RM} and vector of votes (i.e. representativeness) V Rj

Si
(actually

we use the average voting avg(V Rj
Si

)) between subtrajectories of the original
MOD Si ∈ D −R with respect to the representative subtrajectories Rj ∈ R.
Recall that V Rj

Si
(Definition 4.2) consists of |Si| elements, where each one

represents the voting that the segments of Si receive from the segments of
Rj . To this end, in order for the S2T-Clustering algorithm to maximize
Equation 4.7 for the special case where the time window W corresponds to
the lifespan l of D, the cluster CRj of a representative subtrajectory of the
sampling dataset Rj ∈ R, i.e. the set of subtrajectories that are assigned to
cluster CRj , is provided by:

69



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

CRj = {Si ∈ D −R : avg(V Rj
Si

) ≥ avg(V Rv
Si

),

∀Rv ∈ R ∧ avg(V Rj
Si

) ≥ δ}
(4.8)

On the other hand, set Out of outliers consists of subtrajectories that have
been assigned to no cluster:

Out = {Si ∈ D −R− CRj ,∀Rj ∈ R} (4.9)

The algorithm outlined in Algorithm 4.1 simply iterates through all the
representative subtrajectories Rj ∈ R of the sampling dataset R and applies
the constraints of Equation 4.8. Parameter δ is a positive real number
between 0 and 1 that acts as a lower bound threshold of similarity between
subtrajectories and representatives. As such, it controls the size of the
clusters C and the outlier set Out.

4.3.4 ReTraTree Maintenance

S2T-Clustering does not support arbitrary time windows nor dynamic data.
The additional challenge that we have to address is to efficiently support such
a clustering for arbitrary time windows and dynamic data. To achieve this,
we need to efficiently support insertions of new trajectories in the ReTraTree.

The incremental maintenance of the ReTraTree, whenever a batch of record-
ings of a moving object (i.e. a trajectory T ) arrives, is supported by the
ReTraTree-Insert algorithm outlined in Algorithm 4.2. We have already
described how our method incrementally performs the first phase of parti-
tioning in the time dimension (line 2). The update_chunks function returns
the set of chunks H and the respective set of subtrajectories S that corre-
spond to the input trajectory T , i.e. the subtrajectories Si that intersect
temporally with chunk Hi. Then, the algorithm assigns each subtrajectory
Si to an appropriate sub-chunk (lines 3-5). This is actually checked by the
find_subchunk function which, instead of applying Definition 4.6 between
Si and the other subtrajectories in the sub-chunk, simply tests whether the
following inequality holds: |Si,t.s −Hi,n,t.s| ≤ τ/2 ∧ |Si,t.e −Hi,n,t.e| ≤ τ/2.
To gain this efficiency, the implicit assumption is that the temporal borders
of each sub-chunk are left unchanged since its initialization with its first

70



4.3. The ReTraTree Indexing Scheme

subtrajectory. If there is not a matching sub-chunk with respect to time
(line 6), a new sub-chunk is created, which is initialized with an empty
representative set R, and an outliers set Out including the unmatched subtra-
jectory (line 18). If there is an appropriate sub-chunk for the subtrajectory
under processing (line 6), the algorithm tries to greedily assign it to the best
existing cluster (lines 7- 14). If this attempt fails (line 15), the algorithm
invokes ReTraTree-Handle-Outlier algorithm (outlined in Algorithm 4.2).

Algorithm 4.2 ReTraTree-Insert
1: Input: ReTraTree root, trajectory T , τ , ε, δ
2: (H, S) ← update_chunks(root, T )
3: for each pair (Hi, Si) ∈ (H,S) do
4: clustered = false
5: Hi,n = find_subchunk(Si, Hi)
6: if Hi,n 6= Ø then
7: max_vi = −1
8: for each Rj ∈ Hi,n.R do
9: if (non_common_lifespan(Si, Rj) < τ) then

10: v = avg(V Rj
Si

)
11: if (v ≤ δ ∧ v > max_vi) then
12: assign Si to CRj
13: max_vi = v
14: clustered = true
15: if (clustered = false) then
16: ReTraTree−Handle−Outlier(root,Hi,n, Si, ε, δ)
17: else
18: update_chunk(Si, Hi)
19: return

In particular, Algorithm 4.3 adds the subtrajectory into the outliers’ set of
the sub-chunk, which acts as a temporary relation upon which S2T-Clustering
is applied, whenever the size of the relation exceeds a threshold α (e.g., α
Mb that may correspond to a percentage of the dataset) with respect to its
size, at the time of the previous invocation of the algorithm (line 3). Then,
a new set of representative subtrajectories will extend the existing set of
representatives, only if it is δ-different from them (line 5). For each of the
resulting new outliers, we re-insert the subtrajectory from the top of the
ReTraTree structure. This implies that we recursively apply ReTraTree-Insert
for that subtrajectory in order to search for other sub-chunks wherein it could
be clustered or to form a new sub-chunk. This recursion is continued until an
outlier is either clustered or partitioned to smaller pieces, due to successive
applications of S2T-Clustering. In case the size of an outlier becomes smaller

71



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

than w, we archive it in the relation containing the raw data. Before applying
a clustering analysis task and if the tree has been updated since the insertion
of this specific trajectory, we give a last chance to these small outliers to be
clustered by re-dropping them from the top of the structure. In other words,
for a (sub-)trajectory Tk, if its length |Tk| < w and Tk has not been assigned
to a cluster, then, since it cannot be further segmented (and thus become
again candidate to be clustered in a different sub-chunk); it cannot also be
clustered before new trajectories update the tree.

Algorithm 4.3 ReTraTree-Handle-Outlier
1: Input: ReTraTree root, sub-chunk Hi,n, outlier Si, τ , ε, δ
2: Hi,n.Out← Hi,n.Out ∪ Si
3: if |Hi,n.Out| > α then
4: (R,C,Out)← S2T − Clustering(Hi,n.Out, ε, δ)
5: Hi,n.R← Hi,n.R ∪ {R′ ⊂ R | NOT δ − join(Hi,n.R,R)}
6: for each outlier O in Out do
7: if |O| < w then
8: archive O
9: else

10: ReTraTree− insert(root,O, τ, ε, δ)
11: return

4.4 ReTraTree in Action

ReTraTree maintains clustered subtrajectories at its leaves. However, given a
temporal period, it is not enough to retrieve the clusters (i.e. the subtrajec-
tories “following” the representatives) that overlap this period. The reason
is that the subtrajectory clustering of overlapping sub-chunks may form
representatives that: (a) are almost identical (as such, a ‘merge’ operation
should take place in order to report only one cluster as the union of the two
(or more) clusters built around the similar representatives), and/or (b) can
be continued by others (as such, an ‘append’ operation should take place to
identify the longest clusters, i.e. representatives).

In other words, an algorithm is required that takes ReTraTree as input and
searches within it in order to identify the longest patterns with respect to
the user requirements (e.g., discover all valid clusters during a specific period
of time). This is made feasible through appropriate ‘merge’ and ‘append’
operations applied to the query results. To the best of our knowledge, such
a query-based clustering approach is novel in the mobility data management

72



4.4. ReTraTree in Action

and mining literature.

4.4.1 QuT-Clustering

Given two representatives Ri and Rj if (a) the two representatives have the
same lifespan with respect to threshold τ and (b) the two representatives
are also similar with respect to similarity threshold δ (this means that they
origin from different sub-chunks), then this implies a ‘merge’ operation. On
the other hand, if (a) Ri ends close to the timepoint when the Rj starts with
respect to threshold t, (b) the Euclidean distance of the last point of Ri is
close (with respect to a distance threshold d) to the first point of Rj , and
(c) a sufficient number of the same moving objects are represented by both
representatives (with respect to a percentage threshold γ), this implies an
‘append’ operation. Figure 4.3 illustrates representatives of a chunk consisting
of two chunks. A ‘merge’ operation occurs between R1 and R2, whereas R5
and R6 will both be maintained in the final outcome although they have
similar lifespans. An ‘append’ operation occurs between R3 and R4.

 
t 

x 
R

2
 

R
1
 

> τ 

R
3
 

R
4
 

R
7
 

 

R
5
 

R
6
 

sweep line 

Figure 4.3: Representatives of a chunk with two sub-chunks (dashed vs.
continuous polylines) organized in a temporal priority queue of two groups
(blue vs. red polylines).

Algorithm QuT-Clustering provided in Algorithm 4.4 proposes such a solution
on top of ReTraTree. The user gives as parameters the period of interest W ,
and the algorithm traverses the tree and returns clusters valid in this period.

More specifically, the algorithm initially finds the chunks and then the sub-
chunks that overlap the given period (lines 3-5). These sub-chunks are
organized in a priority queue (line 6), which orders groups of representatives

73



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

Algorithm 4.4 QuT-Clustering
1: Input: ReTraTree root, temporal period W
2: Output: Clusters C valid inside W
3: H ← {Hi, | overlap(root.Hi,W )}
4: for Hi ∈ H do
5: Hi,n ← {Hi,n, | overlap(W,Hi,n.per)}
6: TEQ_PQ← bulk_push_TEQ(TEQ_PQ,Hi,n, τ)
7: while TEQ_PQ 6= Ø do
8: R← temporal_interleaving(R ∪ TEQ_PQ.pop())
9: for Rj ∈ R do

10: Roverlap ← temporal_overlap(Rj , R, t)
11: for Rk ∈ Roverlap do
12: if (non_common_lifespan(Rj , Rk) < τ) then
13: if (avg(V Rk

Rj
) ≥ δ) then

14: merge(Rj , Rk)
15: else if (|Rj,t.e −Rk,t.s| < t) then
16: if (euclidean_dist(p(Rj,t.e), p(Rk,t.s)) < d) AND

(common_IDs(Rj , Rk) > γ) then
17: append(Rj , Rk)
18: else
19: continue
20: Rclustered ← {Rj ∈ R, | |Rj,t.e −Hi,t.e| > τ}
21: R← R−Rclustered
22: C ← C ∪Rclustered
23: return C

of the sub-chunks. Each group contains temporally successive representatives
that are at most in temporal distance τ from each other. To exemplify
this ordered grouping of sub-chunks, Figure 4.3 shows the representative
subtrajectories (excluding outliers) of a single chunk, which consists of two
sub-chunks, distinguished as dashed vs. continuous polylines. Note that
for simplicity, y-dimension is omitted and specific borders of sub-chunks
are not depicted, while the representatives form two groups, colored blue
and red, respectively. Subsequently, the algorithm pops each group one-
by-one and sorts all representatives with respect to time dimension, by
interleaving the already sorted (from the step that constructs the priority
queue) representatives coming from different sub-chunks (line 8). This is
done by including representatives left from a previous round of the algorithm.
Then, the algorithm sweeps the temporally interleaved representatives along
the time dimension (line 9) and, for each of them, identifies the subset of
its subsequent representatives in time that their lifespan overlap with the

74



4.4. ReTraTree in Action

lifespan of the currently investigated representative, after the extension of the
latter towards the future by t timepoints. For each pair of representatives Rj
and Rk, the algorithm checks whether a merge operation (lines 12-14) or an
append operation (lines 15-17) is necessary. In any other case (line 19) the
algorithm simply continues with the next representative, and maintains both
representatives intact. After each sweep, the algorithm maintains in the next
round only those representatives that end at most τ seconds before the border
of the current chunk (e.g., R7, in Figure 4.3), as candidates for merging with
subsequent representatives (lines 20-22). The rest of the representatives are
part of the final outcome of the algorithm.

Regarding the technical details, a ‘merge’ operation practically maintains
(in the working set of representatives R) one of the two representatives (e.g.,
the first) in the remaining process. The other representative is appropriately
flagged so as to be able to retrieve the raw data that correspond to this cluster,
if needed. For the ‘append’ operation, we need to retrieve the identifiers
of the subtrajectories (not the subtrajectories themselves) that correspond
to the clusters implied by the representatives and apply a set intersection
operation. This is facilitated by traditional indexing structures, such as by
indexing the pair of representative id (i.e. cluster identifier) and subtrajectory
id of the raw data relation at the 4th level of ReTraTree. Practically, an
‘append’ procedure replaces from the working set of representatives S the two
representatives with one of those subtrajectories that exist in both clusters.
Note that the chosen subtrajectory is selected randomly and it is the one
used in the remaining process. Using another non-random choice at this step
would be possible but not desired, as it would imply retrieval of the actual
subtrajectories. Finally, note that for simplicity reasons, we use the same
threshold τ to compute the equivalence classes, as well as for considering
whether two representatives refer to the same temporal period. In practice,
these two easily configured parameters may be different, depending on the
analysis scenarios pursued by the user. Similarly, threshold t corresponds to
a small duration value, for instance, t = 0 in order to be as strict as possible.

4.4.2 Architectural Aspects

The architecture of our framework is illustrated in Figure 4.4. The core
of the framework is the ReTraTree structure that is fed by either new
incoming trajectories or data that have been processed in a previous round
and could not be clustered. In both cases the ReTraTree-Insert algorithm

75



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

handles the insertion. The trajectories are partitioned according to the
in-memory part of the structure and stored on disk-based partitions. The
trajectories assigned to an existing representative trajectory) are archived on
disk in clustered partitions. Instead, trajectories that were not clustered are
organized on disk in an (intermediate) outlier partition. When the size of
the partitions exceeds a threshold, the S2T-Clustering algorithm applies the
Voting process upon which the Segmentation of the trajectories takes place.
The resulting subtrajectories and their voting descriptors form the input
of the Sampling module that selects new (i.e. non-existing) representatives
that are back-propagated to the in-memory part of the ReTraTree. The
new representative trajectories and the raw subtrajectories form the input
of the GreedyClustering module. If a subtrajectory is clustered around a
new representative, it is archived on disk. Otherwise it is an outlier and
is re-inserted to ReTraTree, as it may now be accommodated in the index.
This is due to its segmentation during the operation of S2T-Clustering, or
due to the creation of new matching sub-chunks or representatives in the
index. Finally, the analyst uses the QuT-Clustering algorithm to perform
interactive clustering analysis by providing different time windows W as
input.

4.4.3 Complexity Analysis

Concluding the discussion about our proposal, we provide a complexity
analysis of (i) loading the ReTraTree structure and (ii) performing QuT-
Clustering, according to the algorithms proposed so far. The assumption
we make throughout our analysis is that the distribution of trajectories
during the dataset’s lifetime is uniform; in other words, selecting two random
timepoints, ti and tj , the number of trajectories being ‘alive’ at ti and tj ,
respectively, remains more or less the same. In real world datasets, we do
not expect to find perfect compliance to this, but we believe that this is a
realistic assumption.

Lemma 4.1. Under the uniformity assumption, the loading cost of the
ReTraTree is:

O(p · (Tk ·N +H ·R2) · log(Tk ·N/H ·R))

where H is the average number of sub-chunks per chunk, R is the average
number of representative subtrajectories per sub-chunk and (Tk denotes the
average number of trajectory points in a database consisting of N trajectories.

76



4.4. ReTraTree in Action

 
 

Voting 

Segmentation 
Sampling 

 
  

Greedy 

Clustering  
  

S2T-Clustering 

 

Parti tion-1 .. . 

new data old data 

W 

disk 

memory 

Partition-N 

ReTraTree 

clusters 

Q
u

T
-C

lu
sterin

g
  

ReTraTree-Insert 
 

Figure 4.4: Architectural aspects of ReTraTree.

Proof. Considering that H is the average number of sub-chunks per chunk
and R denotes the average number of representative subtrajectories per sub-
chunk, ReTraTree can be considered as p balanced trees of h = 2 (excluding
the root and the 3D-Rtrees found at the 1st and the 4th level of the structure,
respectively) with the upper bound for the maximum number of leaves per
tree being upper bounded by H ·R. Given the above, each sub-chunk has an
average size of Tk ·N/H ·R segments. Setting threshold α of each sub-chunk
to this value, ReTraTree will invoke the S2T-Clustering algorithm O(p ·H ·R)
times [result 1].

Regarding the cost of S2T-Clustering algorithm, it is composed by the
costs of its two components, namely Sampling and Greedy-Clustering (see
Algorithm 4.1). As it has been shown in [62], the most computationally
intensive part of the Sampling method is the voting process with O(Tk ·
N · log(Tk · N)) cost for each trajectory in a database consisting of N
trajectories indexed by a 3D-Rtree structure. Note that in our case, we

77



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

maintain a forest of such trees, where each of them corresponds to the
segments of the subtrajectories that belong to the dynamically changing
set of outliers of a sub-chunk. Therefore, in our case the number N of
trajectories corresponds to the number of subtrajectories that have been
assigned to this set. Regarding Greedy-Clustering, as the voting vectors are
pre-calculated during the Sampling step, its cost is dominated by the size of
the representatives set R. More specifically, the cost is O(R · log(Tk ·N)),
i.e. the cost of performing R trajectory-based range queries in the database
[result 2].

Since the size of the outliers of a sub-chunk set is estimated to be Tk ·N/H ·R,
the cost of the S2T-Clustering algorithm in a sub-chunk is: O(Tk ·N/H ·R ·
log(Tk ·N/H ·R) +R · log(Tk ·N/H ·R)) [result 3].

By combining results 1-3 above (i.e. multiply the p ·H ·R number of leaves
with the cost of the S2T-Clustering algorithm of a single sub-chunk), we
have proven Lemma 4.1.

From a different point of view, the cost per trajectory insertion can be split in
four parts: (i) the cost of chunking and sub-chunking the original trajectory
to subtrajectories, (ii) for each subtrajectory, the cost of finding the matching
representative, (iii) the cost of invoking the S2T-Clustering algorithm, which
is only in case that the subtrajectory overflows threshold α of the sub-chunk,
and (iv) the cost of checking whether the new representatives extracted by
S2T-Clustering can be inserted into the already identified representatives.
Regarding the cost of each part, that of (i) is trivial, while that of (ii) and
(iv) is O(R) in both cases, since it implies a scan on the set of representatives,
which however is small (R� N). Obviously, the cost per trajectory insertion
is dominated by the S2T-Clustering algorithm.

Lemma 4.2. Under the uniformity assumption, the cost of the QuT-Clustering
algorithm is:

O((H ·R)2)

where H is the average number of sub-chunks per chunk and R is the average
number of representative subtrajectories per sub-chunk.

78



4.5. Experimental Study

Proof. As already shown, under uniformity assumption, each chunk maintains
O(H · R) representatives. Thus, invoking QuT-Clustering will eventually
scan a number of O(d(|W |)/pe ·H ·R) representatives, where d(|W |)/pe is
the number of the involved chunks. However, at any time, the algorithm
maintains a priority queue of O(H ·R) representatives (worst case scenario).
Note that sorting this priority queue costs O(H ·R) only, since the sets of
representatives of the corresponding sub-chunks are already sorted, thus a
merge-sort performs the required temporal interleaving. Given this, as the
representatives reside in memory and there is no special organization at this
level, for each of these representatives the algorithm will scan all the other
representatives in the worst case, thus leading to O((H ·R)2).

Interestingly, the cost of the QuT-Clustering algorithm is independent to
the size of the database, thus it is a highly efficient solution for progressive
temporally-constrained subtrajectory clustering analysis. This is validated in
the experimental study that follows.

4.5 Experimental Study

In this section, we present our experimental study. ReTraTree and its
algorithms were implemented in-DBMS in Hermes [1] MOD engine over Post-
greSQL, by using the GiST extensibility interface provided by PostgreSQL.
More specifically, the top three levels of ReTraTree that reside in memory
were implemented as temporary tables, while the 4th level was stored in tra-
ditional tables, upon which the 3D-Rtrees were built. Although our proposal
is generic, we chose to put extra effort to implement it on a real-world MOD
management system rather than an ad-hoc implementation, because of the
initially placed goal to support progressive clustering analysis. We argue
that this is an important step towards bridging the MOD management and
mobility mining domains, as state-of-the-art frameworks [35] could make
use of the efficiency and the advantage of our proposal to execute clustering
analysis tasks via simple SQL. This way, our approach becomes practical and
useful in real-world application scenarios, where concurrency and recovery
issues are taken into consideration. All the experiments were conducted
on an Intel Xeon X5675 Processor 3.06GHz with 48GB Memory running
on Debian Release 7.0 (wheezy) 64-bit. We used PostgreSQL 9.4 Server
with the default configuration for the memory parameters (shared_buffers,

79



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

temp_buffers, work_mem, etc.). The outline of our experimental study is
as follows: in Section 4.5.1, we discuss the setting of various parameters.
In Section 4.5.2 we present baseline solutions with which we compare our
proposals. In Section 5.3 we describe the datasets that we used in this study.
In Section 4.5.4, we apply a qualitative analysis to verify that our proposal
operates as expected by using datasets with ground truth. In Section 4.5.5
we provide a sensitivity analysis with respect to various parameters. In
Section 4.5.6 we continue the qualitative evaluation of our approach in real
datasets with general-purpose clustering validation metrics. In Section 4.5.7,
we evaluate the maintenance of ReTraTree in terms of loading performance
and size. In Section 4.5.8, we measure the I/O performance of ReTraTree
with respect to the QuT-Clustering algorithm, the performance of which is
assessed in Section 4.5.9.

4.5.1 Parameter Settings

Regarding parameter settings, as our approach makes use of the sampling
methodology of [62], we followed the best practices presented in that work.
More specifically, the value of parameter σ was set to 0.1% of the dataset
diameter, while that of ε was set to 10−3. We would like to note that we
made several experiments by modifying the values of these parameters and
the differences in the results were negligible, thus in a way we re-validated
our earlier experience in the current setting.

As far as it concerns the parameters that affect the construction of ReTraTree,
their effect is rather straightforward. Here we report our findings, which have
been experimentally validated. More specifically, the more we increase p,
the more chunks we create and hence the more the partitions (i.e. relations
in our implementation). As the number of these partitions increases, the
size and the construction time of ReTraTree decreases as the structure holds
the same amount of data, but in smaller relations (i.e. smaller indexes).
Moreover, as by increasing p we have a smaller structure size, the runtime of
QuT-Clustering will be smaller. Regarding the τ parameter, the smaller it is,
the more the number of sub-chunks and hence the more relations; thus, we
fall at the previous case. In addition, the smaller the similarity threshold δ,
the more the subtrajectories that are assigned to already existing clusters.
This implies that fewer subtrajectories will end up to the outliers’ set and
hence the S2T-Clustering algorithm runs fewer times. This means that
the lower the δ the lower the construction time of the ReTraTree. Finally,

80



4.5. Experimental Study

regarding the value of α that is the threshold of the size of the outliers’ set
above which the S2T-Clustering algorithm is applied, the more we increase
α, the fewer times the S2T-Clustering will run and consequently the smaller
the construction time of ReTraTree. In our experiments we fixed threshold
α to 5% of the dataset size.

In the subsequent sections we report on the effect of the important parameter
of the time window W , while in Section 4.5.5 we particularly study the effect
on both the efficiency and the quality of QuT-Clustering when varying the
values of the remaining parameters, whose effect is not trivial to foresee
without experimentation.

4.5.2 Baseline Solution

To the best of our knowledge the ReTraTree structure and the corresponding
QuT-Clustering algorithm is a novel solution to the temporally-constrained
subtrajectory cluster analysis problem and there is no comparable technique.
Furthermore, as already mentioned, the S2T-Clustering algorithm has some
unique characteristics that make it appropriate as part of our solution.
The most important characteristic is that it provides a greedy solution to
the problem for the degenerated case where the time window W is equal
to the entire lifespan of the dataset. This is a key observation that we
exploit in our approach by organizing our data in sub-chunks consisting of
subtrajectories having the same lifespan and applying S2T-Clustering to
them. In Section 4.5.4 we demonstrate that the state-of-the-art TRACLUS
algorithm [49] that is utilized also by the TCMM framework [53] cannot
identify the clusters in datasets including ground truth. Moreover, in [62]
it is shown that an efficient solution for the sampling process that the
S2T-Clustering algorithm utilizes, it requires a 3D-Rtree index.

Given the above, in this empirical study we set the following comparable
pairs: (i) we compare the ReTraTree structure with the 3D-Rtree structure.
A secondary but important reason for this choice is that 3D-Rtree is the
prevailing structure that state-of-the-art spatial DBMS vendors have chosen
to support in their products (e.g., PostGIS, Oracle Spatial); (ii) we com-
pare the S2T-Clustering algorithm with QuT-Clustering algorithm for the
degenerated case where the time window W is equal to the entire lifespan of
the dataset. Of course, our approach is applicable in any user-defined time
window W . Thus, in this case the comparable pair is on the one hand the
QuT-Clustering and on the other hand again the S2T-Clustering algorithm

81



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

after having restricted the dataset to the selected time window W . This
implies that an analyst should first apply a temporal range query to restrict
the dataset inside W , then build a 3D-Rtree on the restricted dataset and
afterwards run the S2T-Clustering algorithm. This is the best choice to
perform a progressive clustering analysis without the ReTraTree and this is
how the analysts work currently.

4.5.3 Datasets

In this study we used two real datasets, IMIS2 and GeoLife, and one synthetic,
called SMOD, that were presented in Section 1.5. Table 4.2 presents their
statistics.

Table 4.2: Dataset Statistics

Statistic SMOD GeoLife IMIS2
# Trajectories 400 18668 5110
# Segments 35273 24159325 443657

Dataset Duration
(hh:mm:ss)

0:02:00 1932 days 22:59:48 6 days 19:59:53

Avg. Sampling Rate
(hh:mm:ss)

0:00:01 0:00:08 0:18:02

Avg. Segment Length
(m)

8 72 1545

Avg. Segment Speed
(m/s)

7.83 5.01 7.03

Avg. Trajectory Speed
(m/s)

2.86 3.91 4.52

Avg. # Points per
Trajectory

89 1295 88

Avg. Trajectory
Duration (hh:mm:ss)

0:01:28 2:43:15 11:33:45

Avg. Trajectory Length
(m)

691 93046 134,148

4.5.4 Quality of Clustering Analysis in Synthetic Datasets
Including Ground Truth

To the best of our knowledge there is no real trajectory dataset that provides
ground truth that can be utilized for validating clustering techniques. Thus,
our premise is to evaluate our approach qualitatively by using a synthetic

82



4.5. Experimental Study

dataset. The description of SMOD implies that the possible ending times
of a moving object are t ≈ 20, t ≈ 50, t ≈ 80 or t ≈ 100. Based on this
fact and by setting the chunk size equal to the duration of the dataset (i.e.
100 sec) we infer that the ReTraTree construction process should create 4
sub-chunks. We also infer the lifespan l of each sub-chunk. The invocation
of the ReTraTree-Insert that builds these sub-chunks, concludes to apply
the S2T-Clustering algorithm in each of these sub-chunks, which in its turn
results in discovering representatives (i.e. clusters) in each of them. This
ground truth is illustrated in Table 4.3.

Table 4.3: The ground truth hidden in SMOD

Sub-chunk Path Time periods (clusters)

H1,1
l = [0, 100]

A→ B [0, 20], [0, 50]
B → C [20, 80], [50, 100]
B → D [20, 52], [50, 100]
C → B [80, 100]
D → C [52, 100]

H1,2
l = [0, 80]

A→ B [0, 20], [20, 80]
B → C [20, 80]

H1,3
l = [0, 50]

A→ B [0, 20] [0, 50]
B → D [20, 52]

H1,4
l = [0, 20] A→ B [0, 20]

For instance, sub-chunk H1,1 with lifespan [0, 100] (i.e. objects that move
through out the dataset’s lifespan) includes eight representatives, for each of
which we note its lifespan. For example, in H1,1 there are two subtrajectory
clusters on the path A→ B, with lifespans [0, 20], [0, 50], respectively.

We have loaded the SMOD dataset to the ReTraTree. We set the temporal
tolerance parameter to τ = 2 (i.e. we impose 1 second difference in the
starting/ending timepoints). The resulting ReTraTree discovered indeed
four sub-chunks with lifespans: [0, 100], [0, 81], [0, 54] and [0, 20]. By
incrementally applying S2T-Clustering in each of them, we resulted in the
discovery of the representatives. Figure 4.5 illustrates the representatives of
the four sub-chunks. By combining each row in Table 4.3 with Figure 4.5(a)-
(d), we conclude that ReTraTree discovers the correct representatives, with
their lifespans only slightly deviating from ground truth.

We now investigate how the QuT-Clustering algorithm would operate by
setting the temporal period W e.g., to the whole lifespan of the dataset. We

83



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

 

(a)

 

(b)

 

(c)

 

(d)

Figure 4.5: The representatives of the four sub-chunks.

84



4.5. Experimental Study

used the values 5 sec, 10 m and 50% for (t, τ), d and γ respectively. After all
‘append’ and ‘merge’ operations take place, the resulting representatives are
depicted in Fig.12, which is almost identical to the expected ground truth.

 

Figure 4.6: QuT-Clustering results with W=[0, 100].

In order to measure the stability of our method to noise effects, we have
added more Gaussian white noise with Signal to Noise Ratio (SNR) level
SNR = 30 db. The initial SMOD with additive noise of SNR = 50 db
and the new SMOD with SNR = 30 db projected in 2-D spatial and 3-D
spatiotemporal space is illustrated in Figure 4.7. A small number of objects
(i.e. outliers, four in our experiment) randomly move in space other than
the roads that the other objects reside. These are also depicted in Fig. 13.
In addition, the speed of outliers is updated randomly. Furthermore, for
the sake of simplicity we assume that the chunk size is the whole lifespan of
the dataset. According to this, the ground truth is restricted to the eight
different paths that are valid for sub-chunk H1,1.

Given the above, and in order to demonstrate the benefits of S2T-Clustering
we compare with TRACLUS [49], the state-of-the-art subtrajectory clustering
technique. Again we assume that the chunk size is the whole lifespan of the
dataset, hence the ground truth restricts to the eight different paths that are
valid for sub-chunkH1,1. In Figure 4.8(a) and (b), we present the results of the

85



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

 

Figure 4.7: The trajectories of the SMOD with additive noise of SNR =
50 db projected in (a) 2-D spatial space ignoring time dimension and (b)
spatiotemporal 3-D space. The trajectories of the SMOD with additive noise
of SNR = 30 db projected in (c) 2-D spatial space and (d) spatiotemporal
3-D space. (e) The four outliers of the SMOD with additive noise of SNR =
50 db projected in 2-D spatial space ignoring time dimension. (f) The four
outliers of our synthetic MOD with additive noise of SNR = 30 db projected
in 2-D spatial space.

86



4.5. Experimental Study

 

(a)

 

(b)

Figure 4.8: The representative trajectories (i.e. clusters) discovered by (a)
S2T-Clustering (b) TRACLUS.

S2T-Clustering and TRACLUS, respectively. Specifically, in Figure 4.8(a)
we depict the selected subtrajectories by S2T-Clustering to serve as the
pivots (i.e. representatives) for grouping other subtrajectories around them,
while in Figure 4.8(b) we depict the synthesized representatives extracted
(with RTG algorithm [49]) after the TRACLUS’s grouping phase. Based
on this experiment, it turns out that S2T-Clustering effectively discovers
all eight clusters (as well as the noisy subtrajectories), thus S2T-Clustering
is not affected by the trajectories’ shape, yielding an effective and robust
approach for the discovery of linear and non-linear patterns. On the contrary,
TRACLUS fails to identify the hidden ground truth in this SMOD (i.e. it
discovers only four out of the eight clusters) due to the fact that it ignores
the time dimension. Interestingly, note that TRACLUS discovers more or
less linear patterns, ignoring the temporal information of the trajectories, as
mentioned in [49].

In order to evaluate the accuracy of our proposal in a quantified way, we
further employed F-Measure in SMOD. In detail, we built 8 datasets, with
the first consisting of the subtrajectories of the first cluster of sub-chunk
H1,1 only, the second consisting of the subtrajectories of the first and the
second cluster only, and so on, until the eighth dataset, which consisted
of the subtrajectories of all eight clusters. All eight datasets appeared in
two variations: including or not the set of outliers. For each dataset, we

87



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8
F-

M
ea

su
re

# of Clusters

F-Measure

SMOD with outliers SMOD without outliers

Figure 4.9: Quality of S2T-Clustering w.r.t. number of clusters.

applied S2T-Clustering and calculated F-Measure; Figure 4.9 illustrates this
quality criterion by increasing the number of clusters. It is evident that
S2T-Clustering turns out to be very robust, achieving always precision and
recall values over 92.3%, while the outliers are always detected correctly.

4.5.5 Sensitivity Analysis with Respect to Various Parame-
ters

In this section we first study the effect on the quality of the clustering
result when varying the values of the parameters of the QuT-Clustering
algorithm. Recall that QuT-Clustering does not change the clusters of the
trajectories organized in ReTraTree. It returns modified representatives
which are valid inside the given time window W , by merging or appending
the initial representatives. Thus, the goal of the experiment is to measure
the difference between the representatives resulted by the QuT-Clustering
and the initial representatives. Intuitively, having this difference for different
values of various parameters gives us a good hint about the sensitivity of
QuT-Clustering with respect to the various parameters. To measure the
difference, we employ the SSE metric between the initial representatives and
their counterparts returned by QuT-Clustering. Obviously, if a representative
is returned as-is, it contributes 0 to SSE. Apart from this set of experiments
(one for each parameter), we further measure the execution time of QuT-
Clustering, so as to study the effect of the parameters in the efficiency of the
algorithm, in contradiction with its quality.

The results of these experiments on IMIS2 dataset are depicted in Figure 4.10.
More specifically, as depicted in Figure 4.10(a) as τ increases the quality drops

88



4.5. Experimental Study

1.00E+00

1.00E+05

1.00E+10

1.00E+15

10 20 30 40 50 60 70 80

SS
E 

(l
o

g)

Value of τ (in minutes)

(a)

50
55
60
65
70
75

10 20 30 40 50 60 70 80

Ex
e

cu
ti

o
n

 T
im

e

Value of τ (in minutes)

70 (b)

1.00E+00

1.00E+09

1.00E+18

1.00E+27

0 0.2 0.5 0.7 0.9 1

SS
E 

(l
o

g)

Value of δ (in minutes)

(c)

45
50
55
60
65
70

0 0.2 0.5 0.7 0.9 1
Ex

e
cu

ti
o

n
 T

im
e

Value of δ (in minutes)

63.8 (d)

3.16E+07

3.16E+08

10 20 30 40 50 60 70 80

SS
E 

(l
o

g)

Value of t (in minutes)

(e)

63.2

63.4

63.6

63.8

10 20 30 40 50 60 70 80

Ex
e

cu
ti

o
n

 T
im

e

Value of t (in minutes)

63.8 (f)

3.16E+07

3.16E+08

0 50 100 200 400 800 1600

SS
E 

(l
o

g)

Value of d (in minutes)

(g)

63

63.2

63.4

63.6

63.8

0 50 100 200 400 800 1600

Ex
e

cu
ti

o
n

 T
im

e

Value of d (in minutes)

63.8 (h)

3.16E+07

3.16E+08

0 0.2 0.5 0.7 0.9 1

SS
E 

(l
o

g)

Value of γ (in minutes)

(i)

63

63.2

63.4

63.6

63.8

0 0.2 0.5 0.7 0.9 1

Ex
e

cu
ti

o
n

 T
im

e

Value of γ (in minutes)

(j)

Figure 4.10: (a)-(c)-(e)-(g)-(i) Sum of Square Errors, (b)-(d)-(f)-(h)-(j) Exe-
cution time, when varying the parameters of QuT-Clustering.

89



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

due to the fact that we have more merges, hence the resulted representatives
are more different than the original. The increasing number of merges results
in gradual increase of the execution time (Figure 4.10(b)). Figure 4.10(c)
shows that as δ increases the quality increases as fewer merges take place.
Someone would expect that this would decrease execution time, however this
is not the case as the costly operation in the merge phase is the calculation
of the similarity between the two representatives, which is something that
has already taken place. What we actually observe is a slight increase in the
execution time, which occurs because QuT-Clustering ends up processing
more representatives. (Figure 4.10(e), (g), (i) depict that quality is not
affected by the different values of t, d and γ, respectively. The same conclusion
stands also for the execution time illustrated in (Figure 4.10(f), (h), (j),
respectively. This is because an append (raised when satisfying thresholds
on these parameters) does not change the representatives themselves, i.e. an
append simply returns two representatives as one.

Given the above stable behavior of QuT-Clustering with respect to its
parameters, in the rest of the experimental study the values of δ, d, γ, t
and τ were set to the following intermediate values 0.7, 1km, 0.7, 30min and
30min, respectively.

4.5.6 Quality of Clustering Analysis in Real Datasets

In Section 4.5.4 we used a dataset including ground truth. In this section we
use real datasets and general-purpose clustering validation metrics. Specifi-
cally, we evaluate the quality of the clustering through the V R

DW−R measure
introduced in Equation 4.6. Note that this measure stands as an alternative
to the Sum of Square Errors (SSE) and QMeasure used in the evaluation of
TRACLUS [49], as it accumulates the (normalized) distances from the cluster
centroids. More specifically, we use the IMIS2 and GeoLife real datasets
and we compute V R

DW−R for S2T-Clustering and QuT-Clustering in different
subsets of the two datasets. These subsets have been produced by selecting
gradually coarser slices in the time domain. The time window W is set to
lifespan of the subsets. The rationale of the experiment is that the V R

DW−R
of QuT-Clustering should be as close as possible to S2T-Clustering, as the
latter is a good solution of the problem for the degenerated case where the
time window is equal to the lifespan of the dataset. Figure 4.11 confirms
that QuT-Clustering is able to identify clusters as well as S2T-Clustering
does. Put differently, QuT-Clustering results in representatives (after all the

90



4.5. Experimental Study

1.00

10.00

100.00

(l
o

g)

Ιnterval of Temporal Predicate

IMIS - QuT-Clustering IMIS - S2T-Clustering

(a)

1.00

10.00

100.00

(l
o

g)

Ιnterval of Temporal Predicate

GeoLife - QuT-Clustering GeoLife - S2T-Clustering

(b)

Figure 4.11: V R
DW−R of QuT-Clustering and S2T-Clustering against batches

of varying lifespan (settingW to their whole lifespan): (a) IMIS2, (b) GeoLife.

merge and append operations) which are very similar to those resulting from
S2T-Clustering, however as we will show in the subsequent sections, QuT-
Clustering achieves this result with orders of magnitude better performance
than S2T-Clustering.

4.5.7 ReTraTree Maintenance

In this section, we evaluate three different aspects of the ReTraTree structure,
namely the efficiency of (i) loading and (ii) appending data, as well as (iii)
the size of the structure. More specifically, the Load operation, measures
the required time to load increasing volumes of data from scratch, which
correspond to partitions of the MOD that are produced by selecting randomly
a percentage of the total number of trajectories. Figure 4.12 depicts the
construction (loading) time to build, on the one hand, the ReTraTree and,
on the other hand, the 3D-Rtree indices, i.e. the two alternatives to solve the
problem at hand. Moreover, in order to correlate the required construction
time of the indices with query time, we also add the execution time of the
QuT-Clustering and the S2T-Clustering algorithms, setting as time window

91



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

10% 30% 50% 70% 100%Lo
ad

 T
im

e 
in

 S
ec

o
n

d
s 

(l
o

g)

Percentage of Dataset
ReTraTree QuT-Clustering S2T-Clustering 3D-Rtree

(a)

10% 30% 50% 70% 100%Lo
ad

 T
im

e 
in

 S
ec

o
n

d
s 

(l
o

g)

Percentage of Dataset
ReTraTree QuT-Clustering S2T-Clustering 3D-Rtree

(b)

Figure 4.12: Construction time of ReTraTree vs. 3DR-Tree (and execution
time of QuT-Clustering and S2T-Clustering) against datasets with increasing
size: (a) IMIS2, (b) GeoLife.

W equal to the whole lifespan of each dataset. Note the log-scale on y-axis.

From these results, we can make the following observations. First, the increase
in loading time for ReTraTree is sublinear with respect to the dataset size,
which is a positive testimony about its scalability. Second, when the total
cost is considered (indexing and querying), it is clear that for large datasets
our approach outperforms the competitor by two orders of magnitude. This
is due to the fact that querying the ReTraTree is much more efficient than
the 3D-Rtree, as the latter quickly becomes expensive, even for moderate
dataset sizes. Put differently, ReTraTree harvests the increased construction
cost in terms of fast query processing, thus boosting the performance of
spatiotemporal clustering.

On the other hand, the Append operation measures the required time to
append an existing ReTraTree with new batches of data, which correspond to
new temporal periods – to perform this experiment we have split the datasets
in 7 batches of equal duration (however, skewed size). Note that the first
append operation loads data to an empty ReTraTree. Figure 4.13 illustrates
the time for each batch of data to be appended in the two index structures.

92



4.5. Experimental Study

Moreover, in the same figure we present the size of each batch. We observe
that there is a very high correlation between batch size and batch execution
time, perhaps with the exception of the first batch. This demonstrates that
there exist no additional overheads as more batches are appended, thus the
cost of Append mainly depends on the size of the appended batch. The fact
that the first batch’s execution time is disproportionate to its size has to do
with the initialization cost of the ReTraTree.

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7

0

1000

2000

3000

4000

5000

6000

7000

# 
o

f 
Se

gm
e

n
ts

# of Append

Lo
ad

 T
im

e
 in

 S
e

co
n

d
s

IMIS - Size of Append Batch IMIS - ReTraTree Append Duration

Lo
ad

 T
im

e
 in

 S
e

co
n

d
s

(a)

# 
o

f 
Se

gm
e

n
ts

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7

0

5000

10000

15000

20000

25000

30000

# 
o

f 
Se

gm
e

n
ts

# of Append

Lo
ad

 T
im

e
 in

 S
e

co
n

d
s

GeoLife - Size of Append Batch GeoLife - ReTraTree Append Duration

(b)

Figure 4.13: Append of ReTraTree: (a) IMIS2, (b) GeoLife.

Next, we measure the size occupied by the structure. Figure 4.14 depicts the
size of the ReTraTree structure, both on disk and in memory, and compares
it with the size occupied by the indices required for the S2T-Clustering
algorithm. As we have an in-DBMS implementation, the size of the indices
is augmented with the required B-trees on the primary keys of the database
tables.

For clarity, we also present the size of original tables, namely a single table
for the S2T-Clustering case and multiple tables for ReTraTree. As expected,
we observe that the first three levels of ReTraTree have a small in-memory
footprint, while, notably, our approach has a smaller size on disk in contrast
to 3D-Rtree. This is due to that the ReTraTree’s partitioning scheme leads
to more compact 3D-Rtrees (i.e. less dead space).

93



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

0.00E+00

1.00E+09

2.00E+09

3.00E+09

10% 30% 50% 70% 100%

Si
ze

 in
 B

yt
e

s
Percentage of Dataset

S2T-Clustering Tables Size On Disk S2T-Clustering  Size Of Indexes
ReTraTree  Tables Size On Disk ReTraTree Size In Memory
ReTraTree Size Of Indexes

(a)

0.00E+00

2.00E+09

4.00E+09

6.00E+09

10% 30% 50% 70% 100%

Si
ze

 in
 B

yt
e

s

Percentage of Dataset

S2T-Clustering Tables Size On Disk S2T-Clustering  Size Of Indexes
ReTraTree  Tables Size On Disk ReTraTree Size In Memory
ReTraTree Size Of Indexes

(b)

Figure 4.14: Space requirements: (a) IMIS2, (b) GeoLife.

4.5.8 I/O Performance

Now, we evaluate the I/O performance of both QuT-Clustering and S2T-
Clustering with respect to the number of index blocks read from disk
(idx_blk_read) and the ratio of the index page hits (i.e. blocks read from
cache) with respect to to all blocks (idx_hit_ratio).

Figure 4.15(a) depicts the number of index blocks read from disk while
increasing the duration of the time window W whereas Figure 4.15(b) illus-
trates the hit ratio that clearly shows the advantageous use of the index in
our case. The results are for IMIS2 dataset; we observed similar behaviour in
GeoLife. Clearly, QuT-Clustering needs to access orders of magnitude fewer
blocks to perform the clustering task, when compared to S2T-Clustering.
Moreover, this behaviour is consistent also for increased time windows.

4.5.9 Efficiency of QuT-clustering versus S2T-Clustering

As a final experiment, we measure the efficiency of performing the clustering
task. The goal is to evaluate the retrieval of all the valid maximal clusters

94



4.5. Experimental Study

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

10
minutes

1 hour 6 hours 12 hours 1  Day 2 Days 4 DaysN
u

m
b

er
 o

f 
re

ad
s 

(l
o

g)

Duration of Time Window W

IMIS - QuT-Clustering idx_blks_read IMIS - S2T-Clustering idx_blks_read

(a)

0

0.2

0.4

0.6

0.8

1

10
minutes

1 hour 6 hours 12 hours 1  Day 2 Days 4 Days

H
it

 R
at

io

Duration of Time Window W

IMIS - QuT-Clustering idx_hit_ratio IMIS - S2T-Clustering idx_hit_ratio

(b)

Figure 4.15: QuT-Clustering vs. S2T-Clustering (IMIS2 only): (a) blocks
read from disk, (b) hit ratio.

1

10

100

1000

10000

100000

1000000

10
minutes

1 hour 6 hours 12 hours 1  Day 2 Days 4 DaysEx
ec

u
ti

o
n

 T
im

e 
in

 S
ec

o
n

d
s 

in
 

(l
o

g)

Duration of Time Window W

IMIS - QuT-Clustering IMIS - S2T-Clustering

Figure 4.16: Execution time of QuT-Clustering vs. S2T-Clustering by varying
the datasets’ lifespan (IMIS2).

95



Chapter 4. Temporal-constrained Subtrajectory Cluster
Analysis

0

50000

100000

150000

200000

250000

300000

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Ex
ec

u
ti

o
n

 T
im

e 
(i

n
 s

ec
o

n
d

s)

# of  Query

IMIS - QuT-Clustering IMIS - S2T-Clustering

Figure 4.17: Accumulated execution time of QuT-Clustering vs. S2T-
Clustering w.r.t. a bundle of queries of random lifespan (IMIS2).

for varying time windows W , which is critical for progressive clustering
analysis. We compare QuT-Clustering, with an approach that first extracts
the relevant records using a temporal range query, then creates a 3D-Rtree
index on the extracted values, and then applies S2T-Clustering. Figure 4.16
depicts the execution time of both approaches (using a log scale on the y-axis)
by varying the duration of the time windows W . Again, it is clear that for
large datasets our approach outperforms the competitor by two orders of
magnitude.

Moreover, we created a bundle of queries with random lifespan (i.e. time
window W ) and we executed them with random sequence. Figure 4.17
depicts the accumulated execution time, i.e. time depicted for query i+ 1
also includes time required for query i. This experiment clearly shows a
major benefit of ReTraTree. More specifically, S2T-Clustering presents an
excessive cost in performing multiple clustering tasks (with different time
windows W ), while in the case of ReTraTree this cost simply disappears.
In ReTraTree, the overhead of performing a new clustering is negligible, as
depicted by the almost straight line in the chart. Both results are for IMIS2
dataset; we observed similar behaviour in GeoLife (results omitted as they
present no added value).

4.6 Summary

In this chapter, we introduced the temporally-constrained subtrajectory clus-
ter analysis problem. To address it, we proposed ReTraTree, an indexing

96



4.6. Summary

scheme which organizes trajectories by using an effective spatio-temporal
partitioning technique. Partitions in ReTraTree correspond to groupings
of subtrajectories, which are incrementally maintained and represented via
a hierarchical organization of a small (thus, light-weight in-memory) set
of ‘representative’ subtrajectories. Given this, the problem in hand can be
efficiently solved as a query operator on ReTraTree, coined QuT-Clustering.
Our approach further contributes to the mobility data management and
mining domain for the additional reason that it has been designed and imple-
mented in a MOD engine. Such functionality enables the application users to
perform progressive cluster analysis via simple SQL in real extensible DBMS.
Our extensive experimental study showed that our approach outperforms
the state-of-the-art in-DBMS solution supported by PostgreSQL by several
orders of magnitude.

97





5 Time-Aware Subtrajectory
Clustering in Hermes@PostgreSQL

In this chapter, we present an efficient in-DBMS framework for progressive
time-aware subtrajectory cluster analysis. In particular, we address two
variants of the problem: (a) spatiotemporal subtrajectory clustering and (b)
index-based time-aware clustering at querying environment. Our approach
for (a) relies on a two-phase process: a voting-and-segmentation phase
followed by a sampling-and-clustering phase. Regarding (b), we organize
data into partitions that correspond to groups of subtrajectories, which are
incrementally maintained in a hierarchical structure. Both approaches have
been implemented in Hermes@PostgreSQL, a real MOD engine built on top
of PostgreSQL, enabling users to perform progressive cluster analysis via
simple SQL. The framework is also extended with a Visual Analytics (VA)
tool to facilitate real world analysis. The original content of this chapter
appears in [90].

5.1 Introduction

Knowledge discovery in mobility data [72] exposes patterns of moving objects
useful in several fields, such as transportation, climatology, zoology, mobile
social networks. Mobility (mostly GPS-based) data capturing results in
trajectories of moving objects stored in Moving Object Databases (MOD),
call for novel methods aiming at effective comprehension and analysis of
mobility. In the literature of trajectory-based data mining [109], one can
identify several types of mining models used to describe various collective
behavioral patterns. Focusing on trajectory clustering, the majority of
related work proposes a variety of distance functions, utilized by well-known
clustering algorithms to identify collective behavior among entire trajectories.
In a parallel line of research most related to the current approach, researchers

99



Chapter 5. Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

aim to discover local patterns in MOD, i.e. co-movement patterns that are
alive only for a portion of moving objects’ lifespan, such as moving clusters,
flocks, convoys, swarms, platoons and other patterns [109]. Other techniques,
such as TRACLUS [49], simplify and partition the given trajectories and
then apply density-based clustering, focusing on the spatial and ignoring the
temporal dimension.

Exploration of clustering results is often supported by interactive Visual
Analytics (VA) tools, as in the examples illustrated in Figure 5.1. The dataset
employed for this example is a real MOD consisting of aircrafts approaching
airports of the London metropolitan area. However, it is straightforward
to employ datasets from other domains, such as maritime or urban traffic
movement. For instance, the cluster affiliation of trajectory segments is
represented on a map display by color coding. The user can interactively
select which clusters to show or hide, in order to be able to examine selected
clusters in detail. The existence times of the clusters and the changes of their
cardinality over time can be explored using a time histogram, in which bars
are divided into segments painted in the same colors as the cluster members
in the map. The 3D shapes of the cluster members can be seen in a 3D
display. In general, VA systems provide a number of visual and interactive
techniques designed to support mobility data exploration and analysis [6].

Towards the goal of interactive mobility data exploration and analysis, our
motivation in this work is to demonstrate how a MOD engine built on
top of extensible DBMS can efficiently incorporate two subtrajectory clus-
tering algorithms proposed recently, namely Sampling-based subtrajectory
Clustering (S2T-Clustering) [70] and Query-based Trajectory Clustering
(QuT-Clustering) [69]. Interestingly, both algorithms operate on the entire
spatiotemporal domain, by overpassing on the one hand some limitations
of the state-of-the-art TRACLUS framework, while on the other hand elim-
inating hard-to-tune parameters as those introduced in the co-movement
patterns approaches. Most importantly, with our approach we demonstrate
the feasibility of progressive time-aware analytics, in terms that we allow
a data analyst to select different time periods to perform his/her analysis,
without being obliged to apply from scratch costly preprocessing or iterative
clustering procedures.

The practical contribution of this work is that we present a framework that
fulfils two significant specifications: (a) implements efficient and scalable
solutions for subtrajectory clustering that (b) operate on a real-world DBMS

100



5.1. Introduction

 

Figure 5.1: Interactive visual exploration of clustering results: map display
of clusters (top); evolution of cardinality of clusters over time (middle); 3D
shapes of cluster members (bottom).

101



Chapter 5. Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

rather than being ad hoc implementations. The in-DBMS implementation
of our methods is performed in Hermes@PostgreSQL [1], our open source
Moving Object Database (MOD) engine built on top of PostgreSQL, by using
GiST [40] extensibility interface provided by PostgreSQL. To our knowledge,
it is the first time in the literature that GiST is used to index trajectory-based
mobility data for the above purposes. More specifically, GiST is utilized in
order to build a 3D-RTree index tailored for trajectories. Therefore, we argue
that this is a step towards bridging the gap between MOD management and
mobility data mining, as state-of-art frameworks [6, 52, 99] could make use
of the efficiency and the advantage of our approach to execute in-DBMS
(sub-)trajectory clustering via simple SQL queries.

5.2 Major Modules and System Architecture

In this section, we present the details of the two major modules of our
approach, namely S2T-Clustering and QuT-Clustering. Then, we provide
the overall architecture of our system.

5.2.1 S2T-Clustering

In general, the objective of subtrajectory clustering is to partition trajectories
into subtrajectories and then form groups of similar ones, while at the same
time separate those (called outliers) that fit into no group. S2T-Clustering [70]
is a state-of-the-art algorithm consists of two phases: during the first phase, a
Neighborhood-aware Trajectory Segmentation (NaTS) method is applied over
trajectories, thus splitting them in subtrajectories; during the second phase,
Sampling, Clustering and Outlier (SaCO) detection steps are performed in
order to provide the final result. NaTS relies on a voting and segmentation
process that detects homogenized subtrajectories in the MOD with respect
to how many other objects move in their neighborhood, while SaCO selects
the most representative ones to serve as the seeds of the clusters, around
which the clusters are formed (also, the outliers are isolated). In more detail,
during the adopted voting process each 3D trajectory segment of a given
trajectory is voted by other trajectories with respect to their mutual distance.
The voting received by each segment is a value ranging from 0 to N (N being
the cardinality of the MOD) that has the physical meaning of how many
trajectories co-move with that trajectory for a certain period of time. After
the voting process takes place, the trajectory segmentation process follows.
The goal of this step is to partition each trajectory into subtrajectories having

102



5.2. Major Modules and System Architecture

homogeneous representativeness, irrespectively of their shape complexity.
However, the goal of subtrajectory clustering is to partition the entire dataset
into groups (clusters) and to detect the outliers among the subtrajectories
identified by the trajectory segmentation step. Therefore, in our proposal,
we first select the appropriate sampling set S and then, we tackle the
problem of clustering according to the following idea: each subtrajectory
in the sampling set is considered to be a cluster representative. So, the
sampling set should contain highly voted trajectories of the MOD which, at
the same time, would cover the 3D space occupied by the entire dataset as
much as possible. Then, the clustering is done building the clusters “around”
those representatives.

5.2.2 QuT-Clustering

In summary, QuT-Clustering [69] relies upon a hierarchical structure, called
ReTraTree (for Representative Trajectory Tree) that effectively indexes a
MOD for subtrajectory clustering purposes. ReTraTree consists of four levels:
the first two levels operate on the temporal dimension, the third level builds
clusters upon the spatio-temporal characteristics of the trajectories, and
the fourth level is the actual data storage along with the corresponding
indexes (3D-RTree) for effective retrieval. Given a MOD indexed according
to ReTraTree structure and a temporal period W of interest, QuT-Clustering
efficiently retrieves the subset of the MOD, actually the clusters and outliers
at subtrajectory level, that temporally intersect W . The structure of the
QuT-Clustering query in SQL follows:

SELECT QUT (D,Wi,We, τ, δ, t, d, γ);

where D is the dataset name, Wi and We are the initial and the ending time
of the temporal period W , and τ , δ, t, d, γ correspond to the respective
parameters of the QuT-Clustering algorithm [69].

5.2.3 System Architecture

The architecture of our framework is illustrated in Figure 5.2. As expected,
the core of the framework is the ReTraTree. The trajectories composing
the MOD are partitioned according to the in-memory part of the structure
and stored on disk-based partitions. The trajectories assigned to an existing

103



Chapter 5. Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

representative trajectory are archived on disk in dedicated R-tree indexed
partitions (called ‘pg3D-Rtree-k’ in Figure 5.2). On the other hand, outlier
trajectories are organized on disk in a separate partition. When the size
of a partition exceeds a predefined threshold, S2T-Clustering takes action:
it applies Voting among trajectories, with the voting results indicating the
Segmentation of trajectories into subtrajectories that should take place. The
resulting subtrajectories along with their voting descriptors feed the Sampling
module that selects new representatives, which are then back-propagated to
the in-memory part of ReTraTree. The new representative trajectories as well
as the raw subtrajectories form the input of the GreedyClustering module:
if a subtrajectory is clustered around a new representative, it is archived
in its appropriate partition on disk; otherwise, it is considered outlier and
is re-inserted to ReTraTree, as it may now be accommodated in the index.
Note that our implementation is completely independent from PostGIS. This
implies that the underlying R-tree index, coined pg3D-Rtree in Figure 5.2,
has also been implemented from scratch on top of GiST.

Having this functionality in hand, the data analyst is able to perform interac-
tive clustering analysis, by providing different values of W as input, through
either the SQL interface of Hermes@PostgreSQL [1] or the incorporated
V-Analytics tool [6].

5.3 Demonstration of Results

Throughout the demonstration, users will be able to test the system using
a real dataset of moving objects. The users will have the chance to catch
a glimpse “under the hood”, experiment and visualize the results of some
state of the art clustering techniques, such as [70] and [69]. More specifically,
the demonstration captures the following phases - scenarios:

Preparatory phase (background knowledge): Initially, the user has
the opportunity to comprehend the internals of our implementation and API,
which exploits on the extensibility interface given by PostgreSQL. We show
off the data types and operands resulting in Hermes@PostgreSQL MOD
engine. In addition, we demonstrate how the user can use our SQL API
to run all legacy operands, and even more interestingly, focus on the two
subtrajectory clustering approaches, allowing orders of magnitude speedup
in comparison to corresponding PostgreSQL functions [70].

In action phase – scenario 1: Having gained the necessary background

104



5.3. Demonstration of Results

 

 

Figure 5.2: Architecture of the time-aware subtrajectory clustering module
implemented in Hermes@PostgreSQL.

105



Chapter 5. Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

 

Figure 5.3: Time-aware subtrajectory clustering in action: cluster represen-
tatives from two different runs of S2T-Clustering are visually compared by
means of a 3D display.

106



5.3. Demonstration of Results

 

Figure 5.4: Time-aware subtrajectory clustering in action (cont.): holding
patterns performed by aircrafts are discovered and visualized.

knowledge, the user experiences a progressive clustering scenario based on
the S2T-Clustering algorithm [70] as well as related methods, such as T-
OPTICS [56], TRACLUS [49] and Convoys [44], and VA methods that aim
at the analysis of the discovered patterns. For instance, Figure 5.3 presents
an example of results of two runs of S2T-Clustering, for comparison purposes.
The cluster representatives from the two runs are viewed in a 3D display.
The user can either put both sets of results in the same 3D display or create
two 3D displays, each showing one set of results. In the first case, the user
can interactively switch on and off the visibility of each set of results. The
same can be done with a map display. Moreover, the user experiences in
discovering and visualizing other interesting patterns, such as the holding
patterns typically performed by aircrafts as they approach to their destination,
in our case London airports (as it is illustrated in Figure 5.4).

In action phase – scenario 2: In turn, we present a progressive clustering
scenario, this time focusing on the temporal dimension and highlighting
the QuT-Clustering functionality. The goal of this scenario is twofold: first,

107



Chapter 5. Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

we demonstrate via the SQL API the efficiency speedup of performing the
clustering task for varying time periods W . We compare QuT-Clustering
with the alternative approach that consists of (i) extracting the relevant
records using a temporal range query, (ii) creating an R-tree index on the
result of the query, and (iii) applying clustering (S2T-Clustering, in our case).
Second, we follow a similar approach, but this time we use the V-Analytics
component of our framework in order to comprehend the evolvement of the
subtrajectory patterns with increasing time periods W . In detail, by setting
small value of W we focus on the landing phase of aircrafts and visualize the
discovered clusters (recall, e.g., Figure 5.3); then, we increase the value of
W to the past in order to realize the evolution of patterns as aircrafts pass
from the cruising to the landing phase.

For deeper comprehension of both progressive analysis scenarios (S2T-
Clustering and QuT-Clustering) to be demonstrated, two related videos
are available at Hermes@PostgreSQL demo web page1.

5.4 Summary

In this chapter, we presented an efficient in-DBMS framework that facilitates
progressive time-aware subtrajectory cluster analysis. In more detail, we
tackled two variations of the problem: (a) spatiotemporal subtrajectory clus-
tering and (b) on demand index-based time-aware clustering. The framework
is also extended with a Visual Analytics (VA) tool to facilitate real world
analysis. Having such functionality in their hands, data scientists are able to
perform time-aware cluster analysis via simple SQL in real DBMS, where
concurrency and recovery issues are taken into consideration.

1www.datastories.org/hermes/demo

108

www.datastories.org/hermes/demo


Part IIIDistributed Algorithms and
Techniques

109





6 Distributed Subtrajectory Join on
Massive Datasets

As already mentioned, performing advanced knowledge discovery operations,
such as subtrajectory clustering (e.g., [70, 49, 3]), over immense volumes of
data in a centralized way is far from straightforward and calls for parallel
and distributed algorithms that address the scalability requirements. In
more detail, the bottleneck of these approaches is that their computation
raises efficiency issues due to the fact that all of them are actually based on
a trajectory join query. Joining trajectory datasets is a significant operation
in mobility data analytics and the cornerstone of various methods that aim
to identify different kinds of mobility patterns (group behavior, etc.). In
the era of Big Data, the production of mobility data has become massive
and, consequently, performing such an operation in a centralized way is not
feasible.

In this chapter, we address the problem of Distributed Subtrajectory Join
processing by utilizing the MapReduce programming model. We propose
three solutions: (i) a well-designed basic solution, coined DTJb, (ii) a solution
that uses a preprocessing step that repartitions the data, labeled DTJr , and
(iii) a solution that, additionally, employs an indexing scheme, named DTJi.
In our experimental study, we utilize a 56GB dataset of real trajectories from
the maritime domain, which, to the best of our knowledge, is the largest
real dataset used for experimentation in the literature of trajectory data
management. Our extensive experimental study is performed over a solid
and realistic cluster setup, comprised of 49 nodes. The results show that
DTJi performs up to 16× faster compared with DTJb and 10× faster than
DTJr . An earlier version of the content of this chapter appears in [89].

111



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

6.1 Introduction

During the recent years, the proliferation of GPS enabled devices has led
to the production of enormous amounts of mobility data. This “explosion”
of data generation has posed new challenges in the world of mobility data
management. One of these challenges is the so-called trajectory join problem,
which aims to find all pairs of “similar” (i.e. nearby in space-time) trajectories
in a dataset [11, 17, 22, 88]. An even more interesting and challenging problem
is the subtrajectory join query [9], where, for each pair of trajectories, we want
to retrieve all the “portions” of trajectories that are “similar”. However, the
subtrajectory join is a processing-intensive operation. Centralized algorithms
do not scale with the size of today’s trajectory data, thus parallel and
distributed algorithms are necessary in order to provide efficient processing
of subtrajectory join, an issue largely overlooked in the related research.

Several modern applications that manage trajectory data could benefit from
such an operation. For instance, in the urban traffic domain, carpooling is
becoming increasingly popular. More concretely, consider a mobile applica-
tion which tries to match users that can share a ride based on their past
movements. Here, given a set of trajectories we want to find all the pairs of
users that can share a ride for a portion of their everyday routes without
significantly deviating (spatially and temporally) from their daily routine (i.e.
retrieve all pairs of maximal subtrajectories that move close in space and
time). Another interesting scenario concerns the identification of suspicious
movement by a governmental security agency. For instance, given a set of
trajectories that depict the movement of suspicious individuals, we would like
to retrieve all the pairs of moving objects that move “close” to each other for
more than a threshold (moving together for small periods of time could be
considered as coincidental) as candidates for illegal activity. Moreover, such
a query is in fact the building block for a number of operations than aim to
identify mobility patterns, such as co-movement patterns (e.g., flocks [37],
convoys [44], swarms [51]). An even more challenging problem is that of
subtrajectory clustering [70, 3]. An interesting application scenario of sub-
trajectory clustering is network discovery, where given a set of trajectories
(e.g from the maritime or the aviation domain) we want to identify the un-
derlying network of movement by grouping subtrajectories that move “close”
to each other and use cluster representatives/medoids as network edges. One
of the main goals of subtrajectory clustering is to segment trajectories to
subtrajectories. Finally, trajectory segmentation techniques [62, 70], can
directly benefit from the subtrajectory join query since their input, for each

112



6.1. Introduction

≥
 δ
t

εsp
ε t

t

r s

r1

r2

r3

r4

r5

r6

r7

r8

r9
r10

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10
t

t1

t2

t3

t4

t5

t6

t7

t8

(a)

εsp

ε t

t

r s

r1

r2

r3

r4

r5

r6

r7

r8

r9
r10

s1

s2

s3

s4

s5

s6

s7

s8
s9

s10

εsp

ε t

≥
 δ
t

t

t1

t2

t3

t4

t5

t6

t7

t8

(b)

Figure 6.1: (a) A pair of maximally “matching” subtrajectories and (b) a
breaking point r1 and a non-joining point s5 w.r.t. r.

trajectory, is the number of objects that were located close to it at any given
time. However, the bottleneck in all these applications is the underlying
processing cost of the join operation, which calls for parallel and distributed
solutions that scale beyond the limitations of a single machine.

Inspired by the above application scenarios, the problem that we address in
this chapter is as follows: given two sets of trajectories (or a single set and
its mirror in the case of self-join), identify all pairs of maximal “portions” of
trajectories (or else, subtrajectories) that move close in time and space with
respect to a spatial threshold εsp and a temporal tolerance εt, for at least
some time duration δt. To illustrate this informal definition, as depicted
in Figure 6.1(a), given two trajectories r and s, the pair of their maximal
matching “portions” is ({r4, r5, r6, r7, r8}, {s3, s4, s5, s6, s7}). Each point of a
trajectory defines a spatiotemporal ’neighborhood’ area around it, a cylinder
of radius εsp and height εt. In order for a pair of subtrajectories to be
considered “matching”, each point of a subtrajectory must have at least
one point of the other subtrajectory in its “neighborhood”, thus making the
result symmetrical. A pair of matching subtrajectories is maximal if there
exists no superset of either subtrajectories that can replace them and the
pair still qualifies as a “matching” pair.

113



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

There have been some efforts to tackle variations of this problem in a
centralized way [9, 11, 17]. However, these solutions discover pairs of entire
trajectories and cannot identify matching sub-trajectories. In [10], all pairs
of “matching” (with respect to a spatial threshold) subtrajectories of exactly
δt duration are retrieved in contrast with the problem addressed in this
chapter, where the goal is to identify maximally “matching” subtrajectories,
which is vital for exploiting the output in subsequent steps, e.g., the mining
operations mentioned above. Moreover, applying these centralized solutions
to a parallel and distributed environment is not straightforward and is often
impossible if radical changes to the methods/algorithms do not take place,
since there are several non-trivial issues that arise. For instance, how to
partition the data in such a way so that each partition can be processed
independently and be of even size.

In a recent effort, in [81] the authors try to tackle the problem of trajectory
similarity join in spatial networks in parallel. The solution proposed in [81]
handles each trajectory separately and all the data have to be replicated for
each trajectory and, consequently, to each node. Due to this fact, such a
solution cannot scale to terabytes of data, thus making it inapplicable to Big
Data. Furthermore, such an approach assumes that the underlying network
is known in advance, hence it cannot support datasets of moving objects that
move freely in space (e.g., from the maritime or the aviation domain). As a
result, a scenario where the goal is to identify the underlying network cannot
be supported. Finally, the output of [81] is pairs of trajectories and not
subtrajectories, which is significantly different than the problem addressed
in this chapter. More recently, in [82] the authors try to tackle the problem
of trajectory similarity join. Specifically, given two sets of trajectories, a
similarity function (e.g., DTW) and a similarity threshold, they aim to
identify all pairs of trajectories that exceed this similarity threshold. Again,
the problem addressed in [82] is to retrieve pairs of trajectories in contrast
with the problem that we try to tackle in this chapter, which is to retrieve all
pairs of “maximally matching” subtrajectories. In another line of research,
the authors in [29] tackle the problem of k-nn trajectory join in a distributed
manner by employing the MapReduce programming model. In more detail,
given two sets of trajectories R and M , an integer k and a time interval
[ts, te], the goal is to return the k nearest neighbors from R for each object
in M during this time interval. In order to achieve this, a five step procedure
(five MR jobs) is adopted, where the data are preprocessed, subtrajectories
are extracted, the time dependent upper bound is computed, candidates are
found and the trajectories are joined. The intuition behind [29] is to find a

114



6.1. Introduction

distance upper bound d for each trajectory of M , that includes at least k
trajectories from R and then perform a plane sweep distance join based on d.
This approach, address an entirely different problem than the one presented
in this chapter, because we retrieve all pairs of subtrajectories that moved
“close enough” in space and time for at least some time duration.

It is straightforward to claim that an integral part of any algorithm that tries
to address the subtrajectory join query is to identify all pairs of points that
move “close enough” in time and space with respect to a spatial threshold
εsp and a temporal tolerance εt, e.g., r4 and s3 in Figure 6.1(a). In that
sense, another line of research that is closely related to our problem is that of
MapReduce-based spatial [105, 5, 26] and multidimensional joins [86, 54, 32],
where the goal is to identify such points. A generic solution which could form
the basis for any MapReduce-based spatial (or spatiotemporal) join algorithm
is presented in [105], where the input data are partitioned into small, disjoint
tiles at Map stage and get joined at the Reduce stage by performing a plane
sweep algorithm along with a duplication avoidance technique. However, all
of the above approaches try to solve a problem that is significantly different
from ours since our problem is not to join spatial or multidimensional objects
but identify all pairs of “maximally matching” subtrajectories.

In this chapter, we provide efficient solutions for the Distributed Subtrajectory
Join processing problem, as it is formally defined in Section 6.2. To the best
of our knowledge, this problem has not been addressed in the literature yet.
Our main contributions are the following:

• We formally define the problem of Distributed Subtrajectory Join pro-
cessing, investigate its main properties, and discuss its main challenges.

• We present a well-designed algorithm, called DTJb, that solves the
problem of Distributed Subtrajectory Join processing by employing two
MapReduce phases.

• We propose an improvement of DTJb, termed DTJr , which is equipped
with a repartitioning mechanism that achieves load balancing and
collocation of temporally adjacent data.

• To boost the performance of query processing even further, we introduce
DTJi, which extends DTJr by exploiting an indexing scheme that
speeds up the computation of the join.

• We compare with an appropriately modified state of the art MapReduce
spatial join algorithm and show that our solution performs several times

115



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

better.

• We study the performance of the proposed algorithms by using, to the
best of our knowledge, the largest real trajectory dataset (56GB) used
before in the relevant literature, thus demonstrating the scalability of
our algorithms.

The rest of the chapter is organized as follows. In Section 6.2 we introduce the
problem. In Section 6.3, we present DTJb. Subsequently, in Section 6.4 we
propose DTJr that utilizes a preprocessing step. In Section 6.5, we introduce
DTJi that boosts the performance of the join processing. In Section 6.6,
we provide our experimental study. Finally, we conclude the chapter in
Section 6.7.

6.2 Problem Statement

Given a set R of trajectories moving in the xy-plane, a trajectory r ∈ R
is a sequence of timestamped locations {r1, . . . , rN}. Each ri = (xi, yi, ti)
represents the i-th sampled point, i ∈ 1, . . . , N of trajectory r, where N
denotes the length of r (i.e. the number of points it consists of). The pair
(xi, yi) and ti denote the 2D location in the xy-plane and the time coordinate
of point ri respectively. A subtrajectory ri,j is a subsequence {ri, . . . , rj} of r
which represents the movement of the object between ti and tj where i < j.

Given a pair (r, s) of trajectories (the same holds for subtrajectories) with
r ∈ R and s ∈ S, the common lifespan wr,s is defined as the time interval
[max(r1.t, s1.t),min(rN .t, sM .t)], where r1 (s1) is the first sample of r (s, re-
spectively) and rN (sM ) is the last sample of r (s, respectively). The duration
of the common lifespan wr,s is ∆wr,s = min(rN .t, sM .t) - max(r1.t, s1.t)

Further, let DistS(ri, sj) denote the spatial distance between two points ri,
sj , which is defined as the Euclidean distance in this chapter, even though
other distance functions are also applicable. Also, let DistT (ri, sj) denote
the temporal distance, defined as |ri.t − sj .t|. Table 6.1 summarizes the
notations used throughout this chapter.

Definition 6.1. (Matching subtrajectories) Given a spatial threshold
εsp, a temporal tolerance εt and a time duration δt, a “match” between a pair
of subtrajectories (r′, s′) occurs iff ∆wr′,s′ ≥ δt−2εt, and ∀r′i ∈ r′ there exists
at least one s′j ∈ s′ so that DistS(r′i, s′j) ≤ εsp and DistT (r′i, s′j) ≤ εt, and ∀s′j
there exists at least one r′i so that DistS(s′j , r′i) ≤ εsp and DistT (s′j , r′i) ≤ εt.

116



6.2. Problem Statement

Table 6.1: Table of Symbols used in Chapter 6

Notation Description
R (or S) A set of trajectories
r (or s) A trajectory ∈ R (S, respectively)
ri (or sj) A point ∈ r (s, respectively)
DistS(ri, sj) The spatial distance between ri and sj
DistT (ri, sj) The temporal distance between ri and sj
εt Temporal tolerance
εsp Spatial threshold
δt Minimum duration of a “match”
wr,s Common lifespan of r and s
∆wr,s Duration of wr,s
JP The set of pairs of joining points
NJP The set of pairs of non-joining points
BP The set of breaking points
sNJP The subset of pairs of non-joining points
parti The i-th temporal partition
tparts The starting time of a partition
tparte The ending time of a partition
expParti The i-th temporal partition expanded by εt

Definition 6.2. (Maximally matching subtrajectories) Given a pair of
“matching” subtrajectories (r′, s′) which belong to trajectories r, s respectively,
this pair is considered a “maximal match” iff @ superset r′′ of r′ or s′′ of s′

where the pair (r′′, s′) or (r′, s′′) or (r′′, s′′) would be “matching”.

At this point, we should clarify that two trajectories may have more than
one “maximal matches” (i.e. pairs of subtrajectories). Having provided the
above background definitions, we can define the subtrajectory join query
between two sets of trajectories.

Definition 6.3. (Subtrajectory join) Given two sets of trajectories R
and S, a spatial threshold εsp, a temporal tolerance εt and a time duration
δt, the subtrajectory join query searches for all pairs (r′, s′), r′ ∈ r ∈ R and
s′ ∈ s ∈ S, which are “maximally matching” subtrajectories.

6.2.1 A Closer Look at the Subtrajectory Join Problem

An integral part of any algorithm addressing the subtrajectory join query, as
defined in Definition 6.3 above, is to identify all pairs of joining points.

117



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

Definition 6.4. (Joining points) A pair of points (ri,sj), where ri ∈ r
and sj ∈ s, is a pair of joining points iff they satisfy the following property:

DistS(ri, sj) ≤ εsp and DistT (ri, sj) ≤ εt.

In fact, the set of joining points is the outcome of the inner join R ./ S,
where the evaluated join predicates are the ones mentioned above. However,
as it will be explained next, these pairs of points do not suffice to return the
correct query result.

A naive algorithm A ∈ A would require the Cartesian product R × S to
produce the correct result. We claim that R × S can be represented by
two sets of pairs of points, the set of joining points (JP ) and the set of
non-joining points (NJP ). Formally, R× S = JP ∪NJP .

The definitions of these sets follow, and the discussion is aided by Fig-
ure 6.1(b), which is a variation of Figure 6.1(a) in order to emphasize the
distinction between JPs and NJPs.

The set NJP consists of the pairs of points that do not “match”, coined
non-joining points, since some of them might indicate the start or the end of
“maximally matching” subtrajectories.

Definition 6.5. (Non-joining points) A pair of points (ri,sj), where
ri ∈ r ∈ R and sj ∈ s ∈ S, are non-joining points iff ri is not a joining point
with sj:

DistS(ri, sj) > εsp ∨ DistT (ri, sj) > εt.

This case is illustrated in Figure 6.1(b), where (r5, s5) is a pair of non-joining
points or put differently r5 is a non-joining point w.r.t. s5 and vice versa.

A special case of non-joining points, called breaking points (BP ), contains all
points ri ∈ r∀r ∈ R that are non-joining points w.r.t. any other point in S.
The reason why we call such points as breaking points is that they essentially
define the starting or ending of subtrajectories that could potentially belong
to the answer set.

Definition 6.6. (Breaking points) A point ri ∈ r ∈ R is a breaking point
iff it is not a joining point with any other point sj ∈ S:

@sj ∈ S: DistS(ri, sj) ≤ εsp ∧ DistT (ri, sj) ≤ εt.

As it will be shown later, the lack of information about BPs can make an
algorithm A ∈ A to falsely identify a pair of subtrajectories as “matching”.

118



6.2. Problem Statement

The set of BP along with the set of JP is actually the outcome of the full
outer join of R and S. Figure 6.1(b) depicts the case where r1 is a breaking
point of r (r2, r3 and r10 are also breaking points), since it does not “match”
with any other point of any trajectory. Obviously, breaking points are never
reported as part of the answer set and the portion of r that could possibly
contribute to the result is subtrajectory r4,9. By differentiating breaking
points from non-joining points, we reduce the amount of information that
needs to be kept, i.e. instead of keeping multiple pairs of non-joining points
we only keep one breaking point.

In the section that follows, we investigate the theoretical properties of an
efficient algorithm in class A.

6.2.2 Properties of Subtrajectory Join

In this section, we provide the theoretical properties for designing efficient
algorithms for the subtrajectory join problem. The properties shown below
essentially determine which pairs of points from the sets BP and NJP are
necessary for a correct algorithm in class A.

Lemma 6.1. The set of breaking points is necessary in order to produce the
correct result set for the Subtrajectory Join problem.

Proof. It suffices to construct an instance of the problem where an algorithm
A that operates solely on joining points and is unaware of breaking points
would produce erroneous results, thus A /∈ A. Let r′ = r1,n and s′ = s1,(n+1)
denote two subtrajectories, such that there exist n pairs of joining points
(ri,sj) and ∆wr′,s′ = δt. However, let us assume that there exists a point sk ∈
s′ which is a breaking point. Based on the problem definition (Definition 6.1),
if algorithm A was unaware of breaking points, it would falsely identify r′

and s′ as “matching” subtrajectories.

This result indicates that breaking points cannot be ignored by an algorithm,
without compromising the correctness of the result. The remaining question
is whether all non-joining points are also necessary. In the following, we
define a subset of non-joining points points sNJP ⊆ NJP , and show that
this subset is actually necessary.

Definition 6.7. (Necessary subset sNJP of non-joining points) A
pair of non-joining points (ri, sj), where ri ∈ r ∈ R and sj ∈ s ∈ S, belongs to

119



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

sNJP , iff (a) @ a point sp ∈ s, with p 6= j, such that sp is a joining point w.r.t.
ri, (b) @ a point sq ∈ s, with q 6= j, such that DistT (ri, sq) ≤ DistT (ri, sj)
and (c) at least one of the adjacent points of ri, ri−1 or ri+1, is a joining
point w.r.t. some point st ∈ s, with t 6= j.

Actually, condition (a) ensures that ri is a non-joining point w.r.t. every
point of s, (b) guarantees that sj is the temporally closest point of trajectory
s to ri and (c) that at least one of the adjacent point of ri is a joining point
w.r.t. some point of trajectory s. Returning to the example of Figure 6.1(b),
(s5, r5) qualifies to participate in sNJP , since (a) s5 does not “match” with
any point in r, (b) r5 is the temporally closest point of r to s5 and (c) at least
one of adjacent point of s5 (both s4 and s6 in this specific example) “match”
with some point of trajectory r (r5 and r6, respectively). Again, failure to
identify pairs of points such as (s5, r5) would result in erroneously identifying
larger maximally “matching” subtrajectories. In a few words, sNJP consists
of all the pairs of non-joining points that signify the “beginning” or the
“end” of candidate matching subtrajectories. In order for these candidates to
qualify as matching subtrajectories, we need to further verify whether their
common lifespan is larger or equal than δt−2εt, as depicted in Definition. 6.1.

Lemma 6.2. The set sNJP of pairs of non-joining points is necessary in
order to produce the correct result set for the Subtrajectory Join problem.

Proof. The proof is similar to the proof of Lemma 6.1, only using a non-
joining point instead of a breaking point in the constructed instance of the
problem.

In summary, our main finding is that a typical join algorithm that identifies
only the set of JP is not enough in order to address the subtrajectory join
problem. Additionally to the set of JP , an algorithm needs to identify both
the set of BP and the subset sNJP during the join processing, in order to
ensure correctness. It is obvious, from Definition. 6.6 and Definition. 6.7,
that BP ∩ sNJP = ∅.

6.2.3 Distributed Subtrajectory Join

Given two sets R and S of trajectories, the typical approach for parallel join
processing consists of two main phases: (a) data repartitioning, in order to
create pairs of partitions Ri ⊂ R and Sj ⊂ S, such that part of the join can

120



6.2. Problem Statement

be processed using only Ri and Sj , and (b) join processing, where a join
algorithm is performed on partitions Ri and Sj .

Problem 6.1. (Distributed Subtrajectory Join) Given two distributed
sets of trajectories, R = ∪Ri and S = ∪Sj, compute the subtrajectory join
(Definition 6.3) in a parallel manner.

In this setting, the main challenges are the following: (a) ensure that the
created partitions are sufficient to produce parts of the total join without
additional data, (b) generate even-sized partitions in order to balance the
load fairly to multiple nodes, (c) handle the problem of potential duplicate
existence in the join results, which may arise due to the way partitions are
created, and (d) process the actual join on the partitions in an efficient way.
The first challenge sets the foundations for parallel processing, as it identifies
pairs of partitions that can be processed together, without any additional
data, and produce a subset of the final join result. The second challenge
is about load balancing and determines the efficiency of parallel processing,
which is not straightforward, since processing uneven work units in parallel
may lead to sub-optimal performance (as the slowest task will determine the
query execution time). The third challenge, labeled duplicate avoidance, is
about avoiding to generate duplicate results which typically occurs in parallel
join processing. Finally, the fourth challenge, labeled efficient join, refers to
the efficiency of the (centralized) algorithm used to join two partitions.

Clearly, solving the above problem is quite challenging in a distributed setting,
as multiple challenges need to be addressed at the same time. In the following
sections, we present a well designed solution to the Distributed Subtrajectory
Join problem, named DTJb along with two improved versions, coined DTJr
and DTJi, following the popular MapReduce paradigm. In more detail, as
depicted in Table 6.2, DTJb consists of two MapReduce jobs and provides
a duplicate avoidance mechanism. On the other hand, DTJr , consists of
one MapReduce job provides a duplicate avoidance and a load balancing
mechanism. Both DTJb and DTJr have a O(n2) time complexity, with DTJr
being more efficient than DTJb due to the fact that DTJr consists of 1 job
and provides a load balancing mechanism. Finally, DTJi extends DTJr with
an indexing mechanism which improves the time complexity (O(nlogn)) and
further boosts the performance by approximately an order of magnitude,
compared to DTJr .

121



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

Table 6.2: Comparison between the proposed solutions

Solution # of
MR
Jobs

Duplicate
Avoidance

Load
Balancing

Indexing Join
Complex-
ity

DTJb 2 X × × O(n2)
DTJr 1 X X × O(n2)
DTJi 1 X X X O(nlogn)

6.3 The Basic Subtrajectory Join Algorithm

6.3.1 Preliminaries

One of the prevalent technologies for dealing with Big Data and offline
analytics, is the MapReduce programming paradigm [20] and its open-source
implementation Hadoop [85]. A lot of efforts have been made as far as it
concerns join processing through this technology and a survey on limitations
of MapReduce/Hadoop, also related to join processing, is conducted in [25].
In more detail, Hadoop is a distributed system created in order to process
large volumes of data which are usually stored in the Hadoop Distributed
File System (HDFS). When running a MapReduce (MR) job, each Mapper
processes (in parallel) an input split, which is a logical representation of data.
An input split typically consists of a block of data (the default block size is
128MB) but it can be adjusted according to the users’ needs by implementing
a custom FileInputFormat along with the corresponding FileSplitter and
RecordReader. Subsequently, for each record of the split the “map” function
is applied. The output of the Map phase is sorted and grouped by the “key”
and written to the local disk. Successively, the data is partitioned to Reducers
based on a partitioning strategy (also known as shuffling), and each Reducer
receives a partition (group) of data and applies the “reduce” function to the
specific group. Finally, the output of the Reduce phase is written to HDFS.

In recent years, Spark [103] has received much attention and it has demon-
strated to be more efficient than MapReduce, and its open source implemen-
tation Hadoop. In [83], it is shown that Spark outperforms Hadoop in the
majority of operations, such as word count, k-means and page-rank. However,
the only case where Hadoop presents better performance than Spark, as
presented in [83] , is the case of sort. The reason for this behavior is that,
in case the intermediate result between the Map and Reduce phase is very
large and the shuffle selectivity is high (i.e., the ratio of the map output size
to the job input size), Hadoop, unlike Spark, can overlap the shuffle stage

122



6.3. The Basic Subtrajectory Join Algorithm

with the map stage, which effectively hides the network overhead. Actually,
the intermediate result when performing the proposed subtrajectory join
operation can be several times larger than the original dataset, depending
on the values of esp and et, which motivates us for using Hadoop over Spark.

6.3.2 The DTJb Algorithm

Our first algorithm, named DTJb, consists of three phases: (a) the Partition-
ing phase, where input data is read and partitioned, (b) the Join phase, where
the sets JP , BP and sNJP are identified in each partition, and (c) the
Refine phase, where these sets are grouped by trajectory and sorted by time
in order to identify all the pairs of “maximally matching” subtrajectories1.

Partitioning Phase

The first challenge is how to partition the input data in order to satisfy the
requirement for parallel processing. Partitioning the data into N disjoint
temporal partitions R = ∪Ni=1parti, where R is the set of trajectories, cannot
guarantee the correctness during parallel processing, due to the temporal
tolerance parameter εt. Hence, we define a partitioning where each parti is
expanded by εt, thus expanded partitions can be processed independently
in parallel. Let expParti denote such an expanded partition. Processing
each expParti individually guarantees correctness, but at the cost of having
duplicates due to the point replication in temporally overlapping partitions.
To address this duplication avoidance challenge, we supplement each point
with a flag partFlag that indicates whether this point belongs to the original
partition (i.e. not expanded by εt) or not.

Lemma 6.3. An expanded partition expParti is sufficient in order to produce
the sets of JP and BP for parti

1For the sake of simplicity, from now on, we are going to consider the case of self-join.
The transition to the problem of joining two relations is straightforward.

123



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

H
D

FS
 

B
lo

ck
 1

H
D

FS
 

B
lo

ck
 2

H
D

FS
 

B
lo

ck
 L

. . .
. .

e
xp

P
a

rt
 1

[t
1
-ε

t,t
2
+
ε t

)
Jo
in
( 

)

e
xp

P
a

rt
 2

[t
2
-ε

t,t
3
+
ε t

)
Jo
in
( 

)

Fi
le

 1
 

Jo
in

ed
 D

at
a

 
[t

1
,t

2
)

Fi
le

 2
 

Jo
in

ed
 D

at
a

 
[t

2
,t

3
)

Fi
le

 M
 

Jo
in

ed
 D

at
a

[t
M

-1
,t

M
]

In
p

u
t

M
a

p
R

e
d

u
ce

O
u

tp
u

t 
to

 H
D

FS

. .

e
xp

P
a

rt
 M

 
[t

M
-1

-ε
t,t

M
+
ε t

]
Jo
in
( 

)

[t
1
-ε

t,t
2
+
ε t

)

[t
2
-ε

t,t
3
+
ε t

)

[t
M

-1
-ε

t,t
M

+
ε t

]

. .

A
ss
ig
n
()

[t
1
-ε

t,t
2
+
ε t

)

[t
2
-ε

t,t
3
+
ε t

)

[t
M

-1
-ε

t,t
M

+
ε t

]

. .

A
ss
ig
n
()

Tr
aj

ec
to

ry
 1

R
ef
in
e
()

Tr
aj

e
ct

o
ry

 2
R
ef
in
e
()

Tr
aj

e
ct

o
ry

 L
R
ef
in
e
()

. .

Fi
le

 1
R
ea
d
()

Fi
le

 2
R
ea
d
()

Fi
le

 M
R
ea
d
()

. .

M
a

p
R

e
d

u
ce

G
ro

u
p

 b
y 

T
ra

je
ct

o
ry

 
&

 S
o

rt
 B

y 
t

O
u

tp
u

t 
to

 H
D

FS

O
u

tp
u

t 
1

O
u

tp
u

t 
2

O
u

tp
u

t 
L. . .

G
ro

u
p

 b
y 

P
a

rt
it

io
n

 
&

 S
o

rt
 B

y 
t

Jo
b

 1
Jo

b
 2

Fi
gu

re
6.
2:

T
he

D
T
Jb

al
go

rit
hm

in
M
ap

R
ed

uc
e.

124



6.3. The Basic Subtrajectory Join Algorithm

Proof. Joining points: By contradiction. Let us assume that an expanded
partition expParti is not sufficient to produce the set of JP in parti. Then,
there must exist a pair of joining points rj ∈ r and sk ∈ s, such that rj belongs
to partition parti, whereas sk does not belong to expParti. Based on the
definition of expanded partitions, it follows that DistT (rj , sk) > εt. Thus, rj
and sk cannot be joining points, which is a contradiction. Breaking points:
By contradiction. Let us assume that an expanded partition expParti is
not sufficient to produce the set of BP for trajectories in parti. Then,
there must exist a point r∗ (that belongs to parti) of trajectory r, such
that r∗ is a breaking point. To identify if r∗ is a breaking point, we need
to examine whether there exists a point sj ∈ s of any other trajectory s
with DistT (r∗, sj) ≤ εt (Definition 6.6). However, based on the definition
of expanded partitions, such a point sj must belong to expParti, which
contradicts with the assumption that expParti is not sufficient.

Unfortunately, an expanded partition expParti is not sufficient in order to
produce the set of sNJP since, according to Definition 6.7, for each pair
(rj , sk) that belongs to NJP we need to examine rj−1 and rj+1, which may
span to other partitions. However, the set of sNJP can be identified at
the Refine phase, where all the pairs concerning a trajectory are grouped
together.

In more detail, we choose to partition the data into uniform temporal
partitions, where for each pair of partitions (parti, partj), with i 6= j and i, j ∈
[1, N ], it holds that DistT (tpartie , tpartis ) = DistT (tpartje , t

partj
s ). Typically, the

duration of a partition is larger than the maximum interval between two
consecutive points of any trajectory. As illustrated in Figure 6.2, in the Map
phase we access each data point and assign it to the expanded partition with
which it intersects, essentially applying a temporal range partitioning. Then,
the data is grouped by expanded partition, sorted by time and fed to the
Reduce phase, where the Join procedure takes place.

Join Phase

Figure 6.2 shows that each Reducer task takes as input an expanded partition
and performs the Join operation. At this point, the duplication avoidance
technique is applied, by employing the aforementioned flag and emitting only
pairs where at least one point belongs to the original partition. The input
of this phase is a set of tuples of the form 〈t, x, y, trajID, partF lag〉. The

125



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

output of this MR job is a set of (a) JP , (b) BP and (c) candidate sNJP .

In more detail, we apply a plane sweep technique in order to perform the
Join, by sweeping the temporal dimension. We choose to employ such a
technique due to the fact that is much more efficient than a nested-loop join
approach, since our data already arrive sorted by the temporal dimension, as
illustrated in Figure 6.2. A typical plane sweep algorithm would emit only
the set of JP , which is not enough in our case. For this reason, we devised
and implemented a modified plane sweep technique, named TRJPlaneSweep,
depicted in Figure 6.3, which also reports the sets of BP and candidate
sNJP .

Algorithm 6.1 Join(expPart, εsp, εt)
1: Input: An expPart, εsp, εt
2: Output: All pairs of JP , BP and candidate sNJP
3: for each point i ∈ expPart do
4: D[i]← point
5: TRJPlaneSweep(D[], εsp, εt)
6: TreatLastTrPoints()
7: for each point j ∈ BP [] do
8: output((BP [j], null), True)

Algorithm 6.1 presents how the Join processing is performed. Each accessed
point is inserted to an arrayD, which contains points sorted in increasing time.
After point insertion, (Algorithm 6.2 is invoked for the currently accessed
point (say D[i]) if D[i] belongs to the original partition. TRJPlaneSweep
examines the previously accessed points for the previous εt window (line 4).
The role of this function is threefold. First, it identifies joining points with
D[i], e.g., point D[j], and emits them in the form ((D[i], D[j]), T rue) (lines 5-
10). Depending on the outcome of the duplicate avoidance technique, pairs
((D[j], D[i]), T rue) are also output. Second, it discovers points that belong
to the candidate sNJP set by examining whether the previous trajectory
point (getPrevTrPoint)) of D[j] (and D[i]), say D[k], is a NJP (FindMatch)
with each point ∈ D[i].trajID (D[j].trajID, respectively) (lines 11-17).
In case such points are identified, they are output with a different flag
((D[i], D[k]), False) to differentiate them from JP . Third, it discovers the
points that belong to BP . In more detail, in lines 18–19, a breaking point
D[i] is added to the breaking points set BP and in lines 7 and 10 is removed
if a point has a “match”. The remaining points in BP are reported as
breaking points, using the following form: ((D[i], null), T rue) (Algorithm 6.1
lines 7–8).

126



6.3. The Basic Subtrajectory Join Algorithm

Algorithm 6.2 TRJPlaneSweep(D[], εsp, εt)
1: Input: D[], εsp, εt
2: Output: All pairs of JP , BP and candidate sNJP
3: if D[i].partF lag=True then
4: for each element D[j] ∈ [D[i].t− εt, D[i].t] do
5: if DistS(D[i], D[j]) ≤ εsp then
6: output((D[i], D[j]), True)
7: remove D[i] from BP []
8: if D[j].partF lag=True then
9: output((D[j], D[i]), True)

10: remove D[j] from BP []
11: k ← getPrevTrPoint(j,D[])
12: if FindMatch(D[], i, k, εsp, εt) = False then
13: output((D[i], D[k]), False)
14: k ← getPrevTrPoint(i,D[])
15: if FindMatch(D[], j, k, εsp, εt)= False then
16: if D[j].partF lag=True then
17: output((D[j], D[k]), False)
18: if there is no “match” for D[i] then
19: BP []← D[i]

By examining only the previous point of a JP in a trajectory, we might not
examine a possible temporary adjacent point that might lie after the last JP
of a trajectory in each partition. For this reason, we post-process the last JP s
in order to check for candidate sNJP s by invoking the TreatLastTrPoints
function (Algorithm 6.1 line 6).

Example 6.1. As illustrated in Figure 6.3(a), we suppose that the current
point inserted into D is q2. In Figure 6.3(b), assuming that DistS(q2, r2) ≤
εsp, we get a “match” and pair ((q2, r2), T rue) is reported (the symmetric pairs
are omitted for simplicity). Subsequently, we need to find the previous point
of r and in order to achieve this we should traverse our data backwards until
we find it, as presented in Figure 6.3(c). When we find r1, we need to check
whether it is a NJP for each point ∈ q, as illustrated in Figure 6.3(c). If
there exists a point ∈ q that “matches”, in our case q1, nothing is reported and
we proceed to examine whether q2 and p2 are JP s. If DistS(q2, p2) ≤ εsp then
we output the pair ((q2, p2), T rue), as shown in Figure 6.3(d). Subsequently,
we need to find p1 and check whether it is NJP for each point ∈ q. As
depicted in Figure 6.3(e) there is no “match” between p1 and any of the
points of q. For this reason, we report the pair ((q2, p1), False). The same
procedure is continued to the next point inserted to memory as delineated in

127



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

≤εsp

≤εsp

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

((q2,r2), True)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

(b) (c)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

(a)

εtεt

((q2,r2), True)

εtεt

p

q

r≤εsp

≥εsp

≤εsp

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

((q2,r2), True)(d)

εt

((q2,p2), True)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

(e)

εt εt

((q2,r2), True)
((q2,p2), True)
((q2,p1), False)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2 r3

((r3,q2), True)

(f)

εt

((q2,r2), True)
((q2,p2), True)
((q2,p1), False)

Figure 6.3: Join phase - The TRJPlaneSweep algorithm.

Figure 6.3(f) until there are no more points inserted.

The complexity of the Join procedure is O(|D| · a · ((1 − b) · |D|+ b · |D| ·
(2 · (L+ 2 · a · |D|)))), where |D| is the number of points, a is the selectivity
of εt and b is the selectivity of εsp. L is the number of points that have
to be traversed in order to find the previous point of a specific trajectory.
It is obvious that when a tends to reach 1 the complexity tends to reach
O(|D|2). In the worst case, the complexity can be analogous to O(|D|3),
when both a and b tend to reach 1. However, for a typical analysis task εt
and εsp are much smaller than the dataset duration and the dataset diameter
respectively. Roughly, we can say that the complexity is O(a · b · |D|2).

128



6.3. The Basic Subtrajectory Join Algorithm

Refine Phase

The output of the Join phase is actually pairs of points. From now on, let
us refer to the left point of such a pair as reference point and the trajectory
that it belongs to, reference trajectory. The Refine phase consists of a second
MR job that reads the output of the Join step and groups points by the
reference trajectory. Each Reduce task receives all pairs of points belonging
to a specific trajectory, sorted first by the reference point’s time and the
by the non-reference trajectory ID. Figure 6.4 shows an example where the
output pairs of points from the Join step are grouped, sorted and fed as
input to three Reduce tasks (for trajectories p, q, and r respectively). The
general idea here is to scan the set of JP in a sliding window fashion so
as to identify “maximally” matching subtrajectories and at the same time
“consult” the sets of BP and sNJP in order to avoid false identifications, as
described in Section 6.2.2.

((p1,q1), True)

((q1,p1), True)

((p2,q1), False)

((q2,p1), False)

((r3,q2), False)

((r2,q2), True)

((q2,r2), True)

((q1,r1), True)

((r1,q1), True)

((p1,q1), True)

((q1,p1), True)

((p2,q1), False)

((q2,p1), False)

((r3,q2), False)

((r2,q2), True)

((q2,r2), True)

((q1,r1), True)

((r1,q1), True)

((p1,q1), True)

((p2,q1), False)

((p1,q1), True)

((p2,q1), False)

((q1,p1), True)

((q2,p1), False)

((q2,r2), True)

((q1,r1), True)

((q1,p1), True)

((q2,p1), False)

((q2,r2), True)

((q1,r1), True)

((r3,q2), False)
((r2,q2), True)
((r1,q1), True)

((r3,q2), False)
((r2,q2), True)
((r1,q1), True)

(q1,{p1,r1})
(q2,{r2})

(q1,{p1,r1})
(q2,{r2})

(r1,{q1})
(r2,{q2})
(r1,{q1})
(r2,{q2})

MatchList FalseList
Join 

Output Pairs
Sort & Group

(p1,{q1})(p1,{q1}) (p2,{q1.trajID})(p2,{q1.trajID})

(q2,{p1.trajID})(q2,{p1.trajID})

(r3,{q2.trajID})(r3,{q2.trajID})

Figure 6.4: Output of Join and input of Refine phase.

Hence, each Reducer accesses all the pairs of a reference trajectory (say p)
sorted by time, i.e., {p1, p2, . . . , pn}. Algorithm 6.3 describes the pseudo-code
of the Refine phase which aims to identify all the “maximally matching”
pairs of subtrajectories of p with other subtrajectories of any trajectory x
(x 6= p). For each accessed pair ((pi, xj),flag), the algorithm assigns it in one
of the two structures that it maintains: the MatchList and the FalseList. All
JP and BP will be kept in the MatchList, whereas the candidate sNJP is
kept in the FalseList (lines 10–13). Again, this is more clearly depicted in
the example of Figure 6.4. Also, notice that for each reference point in the
MatchList, we maintain a list of points sorted by trajectory ID.

129



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

Algorithm 6.3 Refine(δt, εt)
1: Input: Pairs of points ((pi, xj),flag) for a given trajectory p, sorted by

time
2: Output: Result of Distributed Subtrajectory Join for p
3: for each pair of points ((pi, xj),flag) do
4: if (pi is encountered for the first time) then
5: if DistT(MatchList.lastEntry, MatchList.firstEntry) ≥ δt then
6: resultT ← intersect lists in MatchList and exclude FalseList
7: resultF ← apply sliding window of δt to resultT
8: resultFinal ← resultFinal

⋃
resultF

9: remove MatchList.firstEntry
10: if (flag = True) then
11: addToMatchList(pi, xj)
12: else
13: addToFalseList(pi, xj)
14: output(resultFinal)

Lemma 6.4. The set of candidate sNJP is sufficient so as to identify the
set of sNJP at the Refine phase.

Proof. Consider two pairs of JP , (ri, sj) and (ri+1, sj+n), where ri, ri+1 ∈ r
and sj , sj+n ∈ s. Moreover, let us assume that for each point sm where m ∈
[j+1, j+n−1], sm is a non-joining point for each point of r. Then, points ri,
ri+1, sj , sm and sj+n will span at most to two consecutive temporal partitions:
partk and partk+1. This means that either sj , sm ∈ partk or sm, sj+n ∈
partk+1. In both cases sm will be recognized as a non-joining point for each
point of r, by the procedure that generates the set of sNJP (Definition 6.7).

The algorithm proceeds as follows: as soon as all pairs of points of a specific
reference point pi have been accessed, it initiates processing on the MatchList.
The processing takes place only if the first and last point of p in MatchList
have temporal distance greater than or equal to δt (line 5). The processing
essentially identifies points of other trajectories that join with points of p
in the whole temporal window. This is performed by intersecting the lists
in MatchList and excluding points existing in the FalseList (line 6). List
intersection is efficiently performed in linear time to the length of the lists,
since the lists are sorted by trajectory ID. Figure 6.5 depicts the result of
this processing as resultT.

130



6.3. The Basic Subtrajectory Join Algorithm

Subsequently, the points in resultT are processed as follows. We start from
the first point and take into consideration all points with temporal distance
at most δt − 2εt from the first point. From this set of points, we derive
the subtrajectories that “match” for the entire δt− 2εt window, and insert
them in resultF (line 7). The temporary results of the resultF structure are
added to the final result structure resultFinal, if not already contained in
it (line 8). Then, a new set of points is considered, of temporal distance at
most δt− 2εt from the second point of resultT and the process is repeated,
similarly to a sliding a window of duration δt− 2εt on resultT. In the end,
the first entry of the MatchList (p1, {q1, r1, s1}) is removed (line 9), as all
potential results containing p1 have already been produced. The algorithm
terminates when the entire trajectory is traversed, the resultFinal is returned
and each element of this list is emitted.

δ
t-2

ε
t

C
h

ec
kC

o
n

ta
in

m
en

t(
)

FalseList

(p5,{q6.trajID})
(p4,{s5.trajID})

δ
t

resultT

(p1,{q1,r1,s1})

(p7,{r7})

(p2,{q2,r2,s2})

(p3,{q3,r3,s3})

(p4,{q4,r4,s4})

(p5,{q5,r5})

(p6,{r6})

Check 
FalseList()

resultFinal

(p1,{q1,r1})

(p2,{q2,r2})

(p3,{q3,r3})

(p4,{q4,r4})

(p5,{q5,r5})

MatchList

(p1,{q1,r1,s1})

(p7,{q7,r7})

(p2,{q2,r2,s2})

(p3,{q3,r3,s3})

(p4,{q4,r4,s4})

(p5,{q5,r5})

(p6,{q7,r6})

resultF

(p1,{q1,r1})

(p2,{q2,r2})

(p3,{q3,r3})

(p4,{q4,r4})

(p5,{q5,r5})

Figure 6.5: Refine procedure.

Example 6.2. Figure 6.5 presents a working example of the Refine algorithm
given the specific MatchList and FalseList of trajectory p.Assuming that
DistT (p1.t, p7.t) ≥ δt, we intersect all the lists contained in the specific
window of the MatchList and we pass the result to resultT. In this way, the
list of the last entry of resultT will contain only the points that belong to
the subtrajectories that move “close” enough with p for the whole δt window.
During list intersection, we take into account the FalseList structure in order
to deal with points that belong to sNJP . Specifically, even though for each
pi, with i ∈ [1,7] ∃ a “match” with q, however q6 has no “match” with p, as
depicted in the FalseList. For this reason, q should be excluded from resultT
after p5. Then, a sliding δt−2εt window is created that traverses resultT, and

131



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

for each such window we intersect all lists and the result is stored in resultF.
For the first δt− 2εt window, as depicted in Figure 6.5, subtrajectories r1,5
and q1,5 are identified. The reason for this is to discover the subtrajectories
that move “close” enough, with p for the whole δt−2εt window. Subsequently,
before proceeding to the next δt window, the contents of resultF are inserted
to the final result, if not already contained.

The complexity of the Refine procedure is O(T · SW · dt · l), where T is
the average number of points in a trajectory, SW is the number of points
contained in the δt window, dt is the number of points contained in the δt−2εt
window and l is the size of the list. The complexity, here, clearly depends on
the average number of points per trajectory, the εt and δt parameter, and
the number of pairs emitted by the join phase which in turn depends on εt
and εsp.

6.4 Subtrajectory Join with Repartitioning

Even though the DTJb algorithm provides a correct solution to the Distributed
Subtrajectory Join problem, it has some limitations. In particular, it does
not address the load balancing challenge, since it does not handle the case
of temporally skewed data. Also, due to the two chained MR jobs, the
intermediate output of the first job is written to HDFS and must be read
again by the second job, which imposes a significant overhead as its size is
comparable and can be even bigger than the original dataset.

Motivated by these limitations, we propose an improved two-step algorithm
(DTJr), which consists of the repartitioning and the query step. Each step
is implemented as a MR job. However, the repartitioning step is considered
a preprocessing step, since it is performed once and is independent of the
actual parameters of our problem, namely εsp, εt, and δt.

6.4.1 Repartitioning

The aim of the repartitioning step is to split the input dataset inM equi-sized,
temporally-sorted partitions (files), which are going to be used as input for
the join algorithm. This is essential for two reasons: (a) it will provide the
basis for load balancing, by addressing the issue of temporal skewness in
the input data, and (b) it will result in temporal collocation of data, thus
drastically reducing processing and network communication costs.

132



6.4. Subtrajectory Join with Repartitioning

The repartitioning step is performed by means of a MR job as follows. We
sample the input data, using Hadoop’s InputSampler, and construct an
equi-depth histogram on the temporal dimension. The histogram contains M
equi-sized bins, i.e. the numbers of points in any two bins are equal, where
the borders of each bin correspond to a temporal interval [ti, tj).

The equi-depth histogram is exploited by the Map phase in order to assign
each incoming data object in the corresponding histogram bin, based on the
value of its temporal dimension. Each “map” function outputs each data
object using as key a value [1,M ] that corresponds to the bin that the object
belongs to. During shuffling, all data objects that belong to a specific bin are
going to be sorted in time and will be collected by a single “reduce” function
(thus having M “reduce” functions). As a result, each “reduce” function
writes an output file to HDFS that contains all data objects in a specific
temporal interval [ti, tj) sorted by increasing time. A graphical view of the
MR job is provided in Figure 6.6(a).

A subtle issue is how to determine the number M of bins (and, consequently,
output files). A small value of M , smaller than the number of nodes in the
cluster, would be opposed to the collocation property because data would
have to be transferred through the network. On the other hand, a large
value of M would result to many small files, smaller than the HDFS block
size, and would lead to inefficient use of resources as well as increasing the
management cost of these HDFS files. A good compromise is to have files of
equal size to the HDFS block. Hence, the number of files can be calculated
as M = d InputTotalSizehdfsblocksize e. Collocation can be further improved by extending
the BlockPlacementPolicy interface and forcing temporally adjacent files to
be written to the same nodes.

133



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

O
u

tp
u

t 
1

. . .

H
D

FS
 

B
lo

ck
 1

H
D

FS
 

B
lo

ck
 2

H
D

FS
 

B
lo

ck
 L

. . .
. . .

P
a

rt
it

io
n

 1
[t

1
,t

2
)

P
a

rt
it

io
n

 2
[t

2
,t

3
)

P
a

rt
it

io
n

 M
 

[t
M

-1
,t

M
]

Fi
le

 1
 D

at
a

 
[t

1
,t

2
)

Fi
le

 2
 D

at
a

[t
2
,t

3
)

Fi
le

 M
 D

at
a

[t
M

-1
,t

M
]

[t
1
,t

2
)

[t
2
,t

3
)

[t
M

-1
,t

M
]

. .

A
ss

ig
n

()

G
ro

u
p

 b
y 

P
a

rt
it

io
n

 
&

 S
o

rt
 B

y 
t

In
p

u
t

M
a

p
R

e
d

u
ce

O
u

tp
u

t 
to

 H
D

FS

. . .
[t

1
,t

2
)

[t
2
,t

3
)

[t
M

-1
,t

M
]

. .

A
ss

ig
n

()

Input 
Sampler

Eq
u

i-
d

e
p

th
 

H
is

to
gr

am
B

in
 1

[t
1
,t

2
)

B
in

 M
[t

M
-1

,t
M

]

. . .

Sa
m

p
le

r 
&

 E
q

u
i-

d
ep

th
 

H
is

to
gr

am
 

C
re

a
ti

o
n

In
p

u
t 

Sp
it

 
C

re
a

ti
o

n

. . .

Tr
aj

e
ct

o
ry

 1
R

ef
in

e
()

Tr
aj

e
ct

o
ry

 2
R

ef
in

e
()

Tr
aj

ec
to

ry
 L

R
ef

in
e

()

. .

Sp
lit

 1
Jo

in
( 

)

Sp
lit

 2
Jo

in
( 

)

Sp
lit

 M
Jo

in
( 

)

. .

M
a

p
R

e
d

u
ce

G
ro

u
p

 b
y 

T
ra

je
ct

o
ry

 
&

 S
o

rt
 B

y 
t

O
u

tp
u

t 
to

 H
D

FS

O
u

tp
u

t 
2

O
u

tp
u

t 
L. . .

Sp
lit

 1
 D

at
a

 
[t

1
-ε

t,t
2
+
ε t

)

Sp
lit

 2
 D

at
a

 
[t

2
-ε

t,t
3
+
ε t

)

Sp
lit

 M
 D

at
a

 
[t

M
-1

-ε
t,t

M
+
ε t

)

(a
)

(b
)

Fi
gu

re
6.
6:

T
he

D
T
Jr

al
go

rit
hm

in
M
ap

R
ed

uc
e:

(a
)
R
ep

ar
tit

io
ni
ng

st
ep

an
d
(b
)
Q
ue

ry
st
ep

.

134



6.4. Subtrajectory Join with Repartitioning

6.4.2 The DTJr Algorithm

In order to minimize the I/O cost, the MR job that implements the proposed
algorithm performs the Join procedure in the Map phase, and the Refine in
the Reduce phase. To achieve this, we need to provide to a Map task as input,
a data partition that contains all necessary data in order to perform part of
the Join procedure independently from other Map tasks. Thus, an HDFS
block produced by the repartitioning phase is expanded with additional points
that exist at time (+/-)εt, and this is the process of InputSplits creation. In
this way, points are duplicated to other HDFS blocks, which means that the
same point may be output by two different Map tasks. To avoid this pitfall,
a different duplicate avoidance mechanism is introduced which practically
determines that a point is going to be output only by a single Map task; the
Map task processing the HDFS block where the point belongs to.

As already mentioned, each data partition (InputSplit) that is fed to a
Map task should contain all the data needed to perform the join of points
for the specific partition, i.e. data for the period [tparts − εt, t

part
s + εt].

However, an output file produced by the repartitioning step is not sufficient
due to the temporal tolerance εt, thus we need to augment these output
files with extra data points, so that they form independent data partitions.
At technical level, we devised and implemented a new FileInputFormat
called BloatFileInputFormat, along with the corresponding FileSplitter and
RecordReader, which selectively combines different files in order to create
splits that carry all the necessary data points. Furthermore, during the
creation of input splits we augment (as metadata) each split with the starting
and ending time of the original partition of each split, termed tbases and tbasee .
The utility is to provide us with a simple way to perform duplicate avoidance
at the Join phase.

Figure 6.6(b) shows that each Map task takes as input a split and performs
the join at the level of point for a specific data partition. The input of this
phase is a set of tuples of the form 〈t, x, y, trajID〉 sorted in ascending time
t order. Since the data are already sorted with respect to the temporal
dimension, we can apply the Join procedure, presented in Section 6.3.2. The
output of the Map phase will be the JP , BP and sNJP sets. Finally, the
Refine procedure presented in Section 6.3.2 can be performed at the Reduce
phase.

135



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

6.5 Index-based Subtrajectory Join with Reparti-
tioning

The Join step of the previous algorithms is common and operates on the
array D that contains temporally sorted points. However, it can be improved
in two ways. First, by employing spatial filtering in order to avoid attempting
to join points that are far away. Second, by having an index structure that
given a point pi can efficiently locate the (temporally) previous point pi−1 of
p. Motivated by these observations, we devised and implemented an indexing
scheme in order to speed up the processing of the join.

6.5.1 Indexing Scheme

{p1, q1, r1, p2, r2, q2, r3, p3}

2nd Level
Spatial

 Partitioning
(e.g. QuadTree)

+
SpI
+

TrI

1st Level
Temporal

 Partitioning

Raw 

Data

3rd Level

Data

Data

Partition 1
[t0,t1)

Partition M
[tM-1,tM]

.   .   .
Partition i

[ti-1,ti)
.   .   .

Data

Partition 1
[t0,t1)

Partition M
[tM-1,tM]

.   .   .
Partition i

[ti-1,ti)
.   .   .

Hash

q{2, 6}

r{3, 5, 7}

p{1, 4, 8}

Hash

{2, 3, 5, 6, 7}

{4, 5, 6, 7, 8}

{3, 5, 6, 7}

{1, 2, 4, 5, 6}

SpI TrI

Figure 6.7: Indexing Scheme of DTJi algorithm

As illustrated in Figure 6.7, this scheme consists of 3 levels. We already
covered the first level in Section 6.4.1, where the initial data are partitioned
to equi-sized temporal partitions (Section 6.4). At the second level, we
partition the space. In order to have load balanced partitions we utilize the

136



6.5. Index-based Subtrajectory Join with Repartitioning

spatial partitioning provided by QuadTrees. More specifically, an “empty”
QuadTree is created once, by sampling the original data, as in [26], and
is written to HDFS. It is important to mention here that the QuadTree
contains only the spatial partitions and not the actual points. Then, when
a new query is posed, the QuadTree is loaded into Hadoop’s distributed
cache in order to be accessible by all the nodes. Moreover, at the same
level, we employ two indexes. The first index is a spatial index (SpI) which
enables pruning of points based on their spatial distance, thus decreasing
significantly the number of points that need to be examined within the εt
window. The second index is an index that keeps track of the representation
of each individual trajectory within the temporally sorted structure D (TrI),
thus providing an efficient way to access the previous trajectory point. The
two indexes are created gradually, as the data are read from HDFS. Finally,
at the third level, we have the temporally sorted data that correspond to
the specific temporal partition.

Spatial Index (SpI)

The spatial index, called SpI, utilizes a given space partitioning, in our
case QuadTrees. For each spatial partition of the QuadTree, SpI keeps a
temporally sorted array where each entry is the position of a point that is
contained in the given partition expanded by εsp. SpI is implemented as
a HashMap with key the partition id and value the sorted array. Thus, a
partition can be accessed in O(1), while a point in a partition can be accessed
in O(logPi), where Pi here is the number of points in the corresponding
sorted array. The construction of SpI has O(|D| · h) complexity, where |D| is
the number of points in the specific temporal partition and h is the height
of the QuadTree, since for each point we need to traverse the QuadTree in
order to find out in which expanded partition it is contained. Note that
each point is enriched with the id of its original (i.e. not expanded) spatial
partition, thus consisting of 〈trajID, x, y, t, PartitionID〉.

Trajectory Index (TrI)

The TrI index keeps track of each individual trajectory within D. TrI is also
implemented as a HashMap with key the trajectory id. For each trajectory,
the value is a temporally sorted array, where each entry corresponds to a
point of a trajectory, and the value of the entry is an integer indicating the
point’s position in D. Thus, a trajectory point can be efficiently accessed in

137



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

Algorithm 6.4 JoinI (Split, εsp, εt, tbases , tbasee )

1: Input: A split, εsp, εt, tbases , tbasee

2: Output: All pairs of JP , BP and candidate sNJP
3: QT ← LoadQuadTree()
4: for each point i ∈ Split do
5: if point.t ∈ [tbases − εt, tbasee + εt] then
6: D[i], T rI, SpI ← point
7: TRJPlaneSweepI(D[], T rI, SpI, εsp, εt, tbases , tbasee )
8: TreatLastTrPoints()
9: for each point j ∈ BP [] do

10: output((BP [j], null), True)

O(logT ), where T is the number of points of a trajectory. To exemplify, the
first element of the array holds the position of the first point of the trajectory
inside D and so on. The construction of this index has O(T ) time complexity
since the data is already sorted in time.

6.5.2 The DTJi Algorithm

Having these two indexes at hand we can utilize them in order to perform the
join operation in an efficient way. Algorithm 6.4, presents the index-enhanced
plane sweep procedure. Initially, the QuadTree is loaded into memory from
the distributed cache (line 3) and then, each accessed point is inserted not
only to an array D, which contains points sorted in increasing time, but also
to the SpI and TrI indexes. Finally, the TRJPlaneSweepI() algorithm is
invoked for each accessed point (lines 4–7).

Algorithm 6.5, presents the TRJPlaneSweepI() algorithm. Here, given a
point pi ∈ p, instead of scanning the whole εt window before it, in order to
find “matches”, we perform a search in SpI and get only the points that
belong to the same partition as pi by invoking the getCandidatePoint()
method (line 4). The partition id is retrieved in O(1) and then binary search
is performed in the temporally sorted list of points in order to find the
position of pi inside it. Having that, we can get the previous element, which
will be the previous point in time that lies within the same partition, and
check if the temporal and spatial constraint are satisfied. If they are satisfied,
we have a “match”, we proceed to the previous element of SpI and so on
and so forth. Assuming that we have a “match” with qj that belongs to
trajectory q we need to find the previous point of q. This is achieved by

138



6.5. Index-based Subtrajectory Join with Repartitioning

Algorithm 6.5 TRJPlaneSweepI(D[], T rI, SpI, εsp, εt, tbases , tbasee )

1: Input: D[], εsp, εt, tbases , tbasee

2: Output: All pairs of JP , BP and candidate sNJP
3: if DuplCheck(D[i].t, tbases , tbasee )=True then
4: for each element D[j] returned by getCandidatePoint(i, SpI,D[]) do
5: if DistS(D[i], D[j]) ≤ εsp then
6: output((D[i], D[j]), True)
7: remove D[i] from BP []
8: if DuplCheck(D[j].t, tbases , tbasee )=True then
9: output((D[j], D[i]), True)

10: remove D[j] from BP []
11: k ← getPrevTrPointI(j,D[], T rI);
12: if FindMatchI(D[], i, k, εsp, εt, T rI)= False then
13: output((D[i], D[k]), False)
14: k ← getPrevTrPointI(i,D[], T rI);
15: if FindMatchI(D[], j, k, εsp, εt, T rI) = False then
16: if DuplCheck(D[j].t, tbases , tbasee )=True then
17: output((D[j], D[k]), False)
18: if there is no “match” for D[i] then
19: BP []← D[i]

invoking getPrevTrPointI , which performs a search in TrI in order to retrieve
in O(1) the entry of q (lines 11, 14). Then, by performing binary search
in the temporally sorted list, we can find the position of qj and can easily
get qj−1. Having that, we need to find if it “matches” with any point that
belongs to p. Here, instead of scanning the whole 2εt window of qj−1 in order
to check for “matches” with p, we perform a search in TrI in order to get
the points of p that exist “close” to the time of qj−1 (lines 12, 15). Then,
if the spatial and temporal constraints are satisfied we have a “match” and
the FindMatchI() method returns True. Otherwise, the whole procedure
continues, until the temporal constraint is not satisfied anymore.

Example 6.3. Following the example of Figure 6.3(a)-(f), in Figure 6.8
we can see how the two indexes are utilized in order to perform the TRJ-
PlaneSweep operation. More specifically, in Figure 6.8(a), in order to find the
point that “matches” with q2, we do not scan the entire εt window, instead we
utilize the SpI index in order to find the candidate “matches”. Subsequently,
in order to find the previous point of r2 in r, as shown in Figure 6.8(b), we
employ the TrI index. Finally, so as to find if r1 “matches” with any of the
points of q, we make use of the TrI index again, as depicted in Figures 6.8(c)
and (d). This time we use q2.trajID and r1.t in order to find the points, if

139



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

any, of q that exist “close” to the time of r1.

x-
A
xi
s

t-Axis

εt εt

p1 q1 r1 p2 r2 q2

(d)

p

q

r
x-
A
xi
s

t-Axis

p1 q1 r1 p2 r2 q2

SpI Index

(a)

εt

x-
A
xi
s

t-Axis

≤εsp

p1 q1 r1 p2 r2 q2

TrI Index

(b)

εt

x-
A
xi
s

t-Axis

p1 q1 r1 p2 r2 q2

TrI Index

(c)

Figure 6.8: Example of TRJPlaneSweepI .

The complexity of the index-based solution is O(|D| · h · (log2Pi · a · Pi((1−
b) · Pi + b · Pi · (2 · (log2T + (log2T + a · T ))))))), with |D| being the number
of points, h the height of the QuadTree, a and b the selectivity of εt and εsp
respectively. Pi is the number of points within the i-th partition expanded by
εsp, where Pi � |D|, and T is the number points per trajectory. In the worst
case, where a and b tend to 1, the complexity can reach O(|D| · log2Pi · P 2

i ).
However, again this only occurs for values of εt and εsp that are comparable
to the dataset’s duration and diameter respectively. Roughly speaking, the
complexity drops to O(|D| · (log2Pi · a · b · P 2

i )), which clearly shows the
benefit attained when employing the proposed indexing scheme.

6.6 Experimental Study

In this section, we provide our experimental study on the comparative
performance of the three variations of our solution, namely (1) DTJb that

140



6.6. Experimental Study

uses two MR jobs (Section 6.3), (2) DTJr that employs repartitioning and a
single job to perform the join (Section 6.4), and (3) DTJi that additionally
uses the SpI and TrI indexes for more efficient join processing (Section 6.5).
Furthermore, we compare our solution with the work presented in [105].

The experiments were conducted in a 49 node Hadoop 2.7.2 cluster, provided
by okeanos2, an IAAS service for the Greek Research and Academic Com-
munity. The master node consists of 8 CPU cores, 8 GB of RAM and 60 GB
of HDD while each slave node is comprised of 4 CPU cores, 4 GB of RAM
and 60 GB of HDD. Our configuration enables each slave node to launch
4 containers, thus resulting that at a given time the cluster can run up to
192 jobs (Map or Reduce). The real dataset employed for our experiments is
IMIS, as described in Section 1.5.

Our experimental methodology is as follows: Initially, we verify the scalability
of our algorithms by varying (a) the dataset size, and (b) the number of cluster
nodes (Section 6.6.1). Then, we examine the benefits of the repartitioning
step as well as the associated cost (Section 6.6.2). Successively, we compare
our solution with the work presented in [105] (Section 6.6.3). Subsequently,
we perform a sensitivity analysis in order to evaluate the effect of different
parameters to our algorithms (Section 6.6.4). Finally, we perform a set of
experiments so as to examine the creation time and the size of the proposed
indexes with respect to to varying the number of spatial partitions and εsp
(Section 6.6.5).

Table 6.3 shows the experimental setting, where we vary the following param-
eters: εt, εsp, δt, the maximum number of points per cell, and the number of
cluster nodes, which are the main parameters affecting the performance of
our algorithms.

Table 6.3: Parameters and default values (in bold) used in the experimental
study of Chapter 6

Parameter Values
εt (%) 100%, 150%, 200%, 250%, 300%
εsp (%) 10%, 20%, 30%, 40%, 50%
δt (in minutes) 10, 15, 20, 25, 30
max # of points per cell (%) 1%, 2%, 3%, 4%, 5%
# of Nodes 12, 24, 36, 48

In more detail, the values of εt were calculated as a percentage of the average
2https://okeanos.grnet.gr/home/

141

https://okeanos.grnet.gr/home/


Chapter 6. Distributed Subtrajectory Join on Massive Datasets

duration between two consecutive trajectory samples (≈ 600 sec) and εsp
was calculated as a percentage of the diameter of the smallest cell produced
by the QuadTree. Parameter δt depends on the application scenario. For
example, when trying to identify transshipment behavior, where two vessels
might illegally exchange goods, 20 minutes is too small. The application
scenario that we had in mind when setting this parameter was the clustering
scenario, where the goal is to identify groups of objects that moved together
for at least some duration, so 20 minutes seemed appropriate. In fact, as it
was expected, setting different values to δt, as illustrated in Figure 6.12, does
not affect significantly the execution time of our solution, since it affects only
a small part of the refine procedure. Finally, the maximum number of points
per cell is calculated as a percentage over the total population.

6.6.1 Scalability

 0

 1

 2

 3

 4

 5

 6

20% 40% 60% 80% 100%

S
lo

w
 D

o
w

n

Data Percentage

DTJb
DTJr
DTJi

(a)

 0

 10

 20

 30

 40

 50

 60

 70

20% 40% 60% 80% 100%

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

Data Percentage

DTJb−Refine
DTJb−Join

DTJr−Refine
DTJr−Join

DTJi−Refine
DTJi−Join

(b)

 0

 1

 2

 3

 4

 5

12 24 36 48

S
p

e
e

d
 U

p

# of Nodes

DTJb
DTJr
DTJi

(c)

 0

 50

 100

 150

 200

 250

12 24 36 48

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

# of Nodes

DTJb-Refine
DTJb-Join

DTJr-Refine
DTJr-Join

DTJi-Refine
DTJi-Join

(d)

Figure 6.9: Scalability analysis varying (a),(b) the size of the dataset and
(c),(d) the number of nodes.

Initially, we vary the size of our dataset and measure the execution time of
our algorithms. To study the effect of dataset size, we created 4 portions

142



6.6. Experimental Study

(20%, 40%, 60%, 80%) of the original dataset. As the dataset size increases
and the number of nodes remains the same, it is expected that the execution
time will increase. In order to measure this, for each portion Di of the
dataset with i ∈ [1, 5], we calculate SlowDown = TDi

TD1
, where TD1 is the

execution time of the first portion (i.e. 20%) and TDi the execution time
of the current one. As shown in Figure 6.9(a), as the size of the dataset
increases, the DTJr linear and the DTJi appears to have linear behaviour,
with DTJi presenting better scalability. On the other hand, DTJb appears
to have a somehow “abnormal” behaviour. This can be justified if we study
Figure 6.10, which presents the standard deviation of the different portions
of the dataset. In fact, we can observe that DTJb in Figure 6.9(a) is affected
by how imbalanced is the partitioning in each portion of the dataset, as
depicted in DTJb Figure 6.10. To investigate further the performance of
the different algorithms, we measure separately the execution time of the
Join and Refine phases for all algorithms. Concerning the Join phase, as
illustrated in Figure 6.9(b), DTJi outperforms DTJb by 16× and the DTJr
by almost one order of magnitude. Regarding the Refine phase, as depicted
in Figure 6.9(b), DTJr and DTJi, perform exactly the same, as anticipated,
since they use an identical algorithm. Instead, DTJb performs worse due to
the fact that the Refine phase is implemented as a second MR job, which
means that the output of the Join phase, which is typically several times
larger than the input data, needs to be read from HDFS and get sorted,
grouped and shuffled to the Reduce tasks.

Subsequently, we keep the size of the dataset fixed (at 100%) and vary the
number of nodes. As the number of nodes increase and the dataset size
remains the same, it is expected that the execution time will decrease. In
order to measure this, for each portion Ni of the dataset with i ∈ [1, 5], we
calculate SpeedUp = TNi

TN1
, where TN1 is the execution time when using the

minimum number of nodes (i.e. 12) and TNi the execution time of the current
one. In this experiment, as illustrated in Figure 6.9(c) and (d), we observe
that all three approaches present linear scaling, with DTJi demonstrating
slightly better scalability. The reason why the behaviour is different here,
is that in this experiment the dataset that was employed was fixed (100%).
This means that, despite the fact that we vary the number of nodes, the
effect of the different algorithms over the data is the same. On the contrary,
when we increase the amount of data, as already shown in Figure 6.9(b),
we can see than the performance of DTJb is affected by the skewness of the
different portion of the dataset that were used. As depicted in Figure 6.10,
we can observe that the standard deviation of DTJb affect significantly DTJb

143



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

in Figure 6.9(a) and (b).

6.6.2 Repartitioning and Load Balancing

In this set of experiments, we evaluate the cost of the repartitioning step
employed by DTJr and DTJi. In Figure 6.10(a), we compare DTJb (which
does not use this step) against DTJr and DTJi after including in the latter
two algorithms the time needed for repartitioning. The result shows that even
for a single query both algorithms outperform DTJb. Obviously, for multiple
queries with different query parameters (εt, εsp, δt), the gain is multiplied,
since the repartitioning cost needs to be paid only once, before processing
the first query. This experiment justifies the use of the repartitioning step,
while demonstrating its low overhead in the case of a single query, which in
the case of multiple queries becomes negligible.

 0

 10

 20

 30

 40

 50

 60

 70

 80

20% 40% 60% 80% 100%

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

Data Percentage

DTJb
DTJr

DTJr-Repartition
DTJi

DTJi-Repartition

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

20% 40% 60% 80% 100%

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

x
1

0
6
)

Data Percentage

DTJb
DTJr

(b)

Figure 6.10: (a) Repartitioning cost and (b) Load balancing

In order to quantify whether the work allocation of the Join is balanced to the
different parallel tasks, we compare the input size of the Join phase of DTJb,
against the Join phase of DTJr . In Figure 6.10(b), we report the standard
deviation of the size of input data for the various tasks. Smaller values of the
standard deviation, indicate that the different tasks are assigned with similar-
sized input data, thus the load is more fairly balanced. DTJr demonstrates
significantly lower standard deviation, approximately one order of magnitude,
than DTJb. This also partly justifies the overall better performance of DTJr
illustrated in Figure 6.9(b) and Figure 6.9(d).

144



6.6. Experimental Study

6.6.3 Comparative Evaluation

As already mentioned, the problem of Distributed Subtrajectory Join has not
been addressed yet in the literature and it is not straightforward (if and) how
state of the art solutions to trajectory similarity search and trajectory join
can be adapted to solve the problem. However, if we utilize only a specific
instance of our problem, when δt = 0, then we only need to identify the
set of JP during the Join phase. Based on this observation, we select to
compare with the work presented in [105], called SJMR, a state of the art
MapReduce-based spatial join algorithm, which is able to identify efficiently
the set of JP that will be passed to the Refine procedure and produce the
desired result. The reason why SJMR was chosen is that it is a generic
solution which could form the basis for any distributed spatial join algorithm
and thus required the minimum amount of modifications so as to match with
our problem specification.

More specifically, SJMR repartitions the data at the Map phase and Joins
them at the Reduce phase by performing a plane sweep join. For the sake
of comparison, we modified SJMR by injecting time as a third dimension
and introducing parameters εsp and εt. In more detail. at the Map phase
the spatiotemporal space is divided to tiles using a fine grained grid. Then,
each data point is expanded by εsp and εt and is assigned to the tiles with
which it intersects. Subsequently, the tiles are mapped to partitions using
the method described in [105]. At the Reduce phase, the points are grouped
by partition and sorted by one of the dimensions (we chose the temporal
dimension so as to be aligned with our solution). Finally, we sweep through
the time dimension and report the set of JP . In addition, we implemented a
modified version of SJMR, named SJMRi, that makes use of our quadtree
index.

So, in this set of experiments we compare DTJi-Join, which outperforms
DTJb-Join and DTJr-Join, with SJMR. In more detail, we vary the size of
our dataset and measure the execution time of the three algorithms. The
results, as illustrated in Figure 6.11 show that DTJi-Join not only performs
significantly better than SJMR but more importantly, the gain of DTJi-Join
over SJMR increases for larger data sets. The reason for this behaviour
lies mainly due to the utilization of the indexing structure of DTJi ( [105]
uses no indexes) and the fact that DTJi-Join is a Map-only job where the
repartitioning cost is “paid” only once (as a preprocessing step), unlike
SJMR, where this cost is “paid” every time at the Map phase, as explained

145



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

 0

 1

 2

 3

 4

 5

 6

20% 40% 60% 80% 100%

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

Data Percentage

DTJi−Join
SJMRi
SJMR

Figure 6.11: Comparative evaluation between DTJi and SJMR

earlier.

On the other, the results show that SJMRi performs significantly better
than SJMR but worse than DTJi-Join. The reason why DTJi-Join performs
better SJMRi is mostly because DTJi-Join is a Map-only job while SJMRi

is a Map-Reduce job, hence DTJi-Join avoids sorting, shuffling and network
transfer cost between the Map and Reduce phase that SJMRi has to undergo.

6.6.4 Sensitivity Analysis

In the following experiment, we perform a sensitivity analysis of algorithms
DTJr and DTJi. We exclude DTJb from this set of experiments, as it
consistently performs significantly worse than the other two algorithms.

Initially we vary the value of εt while retaining fixed the values of the
other parameters. As shown in Figure 6.12(a), the execution time of both
algorithms, as expected, increases with εt. In more detail, the Join phase of
DTJr is more sensitive to the fluctuation εt than the Join phase of DTJi,
due to the fact that the latter is utilizing the SpI index which, for a given εt,
performs spatial filtering instead of scanning the entire space in order to find
“matching” pairs of points. What is more interesting is that as εt increases
the difference between the two approaches increases, which means that for
higher values of εt the difference, in terms of execution time, will be higher
than one order of magnitude. As far as it concerns the Refine step, both
approaches present the same increasing behavior when εt increases, since
both of them employ the same algorithm, due to the fact that the higher the
εt, the larger the sliding window that is created.

146



6.6. Experimental Study

 0

 10

 20

 30

 40

 50

10 15 20 25 30

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

εt (in minutes)

DTJr-Refine
DTJr-Join

DTJi-Refine
DTJi-Join

(a)

 0

 10

 20

 30

 40

 50

10% 20% 30% 40% 50%

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

εsp (%)

DTJr-Refine
DTJr-Join

DTJi-Refine
DTJi-Join

(b)

 0

 10

 20

 30

 40

 50

10 15 20 25 30

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

δt (in minutes)

DTJr-Refine
DTJr-Join

DTJi-Refine
DTJi-Join

(c)

Figure 6.12: Sensitivity analysis varying (a) εt, (b) εsp and (c) δt

Then, we set different values to εsp while keeping the values of the other
parameters fixed. As illustrated in Figure 6.12(b), εsp affects directly the
Join and indirectly the Refine phase of both approaches. More specifically,
the Join phase of DTJr is slightly affected by setting different values to εsp
due to the fact that, for a given εt, DTJr will search the whole space in
order to find “matches”. Hence, εsp will only affect the number of “matches”.
On the other hand, DTJi does not search the whole space but utilizes the
SpI index which, consequently, makes it more sensitive to εsp. The only
case where the Join phase of DTJr performs the same as DTJi is when εsp
spans the whole dataset space. Regarding the Refine step, as expected, both
approaches perform the same and the higher the εsp, the higher the execution
time. The reason for this behaviour is that as εsp increases, the product of
the Join phase increases.

Finally, we vary the values of δt while keeping the values of the other
parameters fixed. As presented in Figure 6.12(c), this parameter affects only
the Refine phase, as anticipated. More specifically, the higher the δt the
slightly higher the execution time of both approaches. This takes place due

147



Chapter 6. Distributed Subtrajectory Join on Massive Datasets

to the fact that as δt increases, the sliding window gets larger.

6.6.5 Indexing

In order to measure the effect of having different number of spatial partitions
in spatial index size and spatial index construction time, we perform a final
set of experiments. More specifically, we vary the maximum number of points
per cell parameter of the QuadTree, and we measure the index creation time
and the index size. As illustrated in Figure 6.13(a), the SpI construction
time increases as the maximum number of points per cell decrease, while
the TrI construction time is, as expected, not affected by that. This occurs
due to the fact that as the maximum number of points per cell decreases,
the number of spatial partitions increases. Furthermore, as depicted in
Figure 6.13(a), the fewer the maximum number of points per cell the smaller
the execution time of the Join algorithm. It is worth mentioning that the
overall index construction time as a percentage over the execution time of
the Join algorithm varies only between 4% and 11%.

 0

 50

 100

 150

 200

 250

 300

 350

1% 2% 3% 4% 5%

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

Max # Of Points Per Cell

DTJi-Join
TrI Creation Time

SpI Creation Time

(a)

 0

 20

 40

 60

 80

 100

1% 2% 3% 4% 5%

S
iz

e
 (

in
 G

B
)

Max # Of Points Per Cell

D Size
TrI Size

SpI Size

(b)

 0

 2

 4

 6

 8

 10

 12

10% 20% 30% 40% 50%

S
iz

e
 (

in
 G

B
)

Max # Of Points Per Cell

SpI Size

(c)

Figure 6.13: (a) Index construction time, (b) Index size and (c) Effect of εsp

148



6.7. Summary

As far as the size of the indexes is concerned, Figure 6.13(b) illustrates how
the size is affected when varying the maximum number of points per cell.
As expected, the TrI index is not affected, whereas the SpI index slightly
increases its size as the number of partitions increase. At this point, we
should mention that compared to the size of D, the percentage of the total
size of the indexing scheme over D varies only between 24% and 28%.

Another parameter that can affect the SpI index is εsp due to the fact that
each spatial partition is enlarged by εsp. As depicted in Figure 6.13(c), the
size of SpI increases as εsp increases.

6.7 Summary

In this chapter, we introduced the Distributed Subtrajectory Join query,
an important operation in the spatiotemporal data management domain,
where very large datasets of moving object trajectories are processed for
analytic purposes. To address this problem in an scalable manner following
the MapReduce programming model, we initially provided a well-designed
basic solution which is used as a baseline in order to propose two efficient
improvements, called DTJr and DTJi which can boost the performance by
up to 16× and 10×, respectively. Our experimental study was performed on
a very large real dataset of trajectories from the maritime domain,consisting
of 56 GB of data (or 1.5 billion time-stamped locations).

149





7 Scalable Distributed Subtrajectory
Clustering

Having already tackled the problem of Distributed Subtrajectory Join, in this
chapter, we address the problem of Distributed Subtrajectory Clustering in
an efficient and highly scalable way. The problem is challenging because the
subtrajectories to be clustered are not known in advance, but they need to be
discovered dynamically based on adjacent subtrajectories in space and time.
Towards this objective, we split the original problem to three sub-problems,
namely Subtrajectory Join, Trajectory Segmentation and Clustering and
Outlier Detection, and deal with each one in a distributed fashion by utilizing
the MapReduce programming model. The efficiency and the effectiveness of
our solution is demonstrated experimentally over a synthetic and two large
real datasets from the maritime and urban domains and through comparison
with two state of the art subtrajectory clustering algorithms. An earlier
version of the content of this chapter appears in [91].

7.1 Introduction

Nowadays, the unprecedented rate of trajectory data generation, due to
the proliferation of GPS-enabled devices, poses new challenges in terms of
storing, querying, analyzing and extracting knowledge from big mobility data.
One of these challenges is cluster analysis, which aims at identifying clusters
of moving objects (thus, unveil hidden patterns of collective behavior), as
well as detecting moving objects that demonstrate abnormal behaviour and
can be considered as outliers.

The research so far has focused mainly in methods that aim to identify
specific collective behavior patterns among moving objects, such as [48, 45,
44, 60, 51, 50, 92, 107, 28]. However, this kind of approaches operate at

151



Chapter 7. Scalable Distributed Subtrajectory Clustering

specific predefined temporal “snapshots” of the dataset, thus ignoring the
route of each moving object between these sampled points. Another line of
research, tries to identify patterns that are valid for the entire lifespan of the
moving objects [56, 67, 21, 79]. However, discovering clusters of complete
trajectories can overlook significant patterns that might exist only for some
portions of their lifespan. The following motivating example shows the merits
of subtrajectory clustering.

Example 7.1. (Subtrajectory clustering) Figure 7.1(a) illustrates six tra-
jectories moving in the xy-plane, where each one of them has a different
origin-destination pair. More specifically, these pairs are A → B, A → C,
A→ D, B → A, B → C and B → D. These six trajectories have the same
starting time and similar speed. A typical trajectory clustering technique
would fail to identify any clusters. However, the goal of a subtrajectory
clustering method is to identify 4 clusters (A → O (red), B → O (blue),
O → C (purple), O → D (orange)) and 2 outliers (O → A and O → B

(black)), as depicted in Figures 7.1(b).

A

B

C

D

O

(a)
A

B

C

D

O

(b)

Figure 7.1: (a) Six trajectories moving in the xy-plane and (b) 4 clusters
(red, blue, orange and purple) and 2 outliers (black).

The problem of subtrajectory clustering is shown to be NP-Hard (cf. [3]).
In addition, the objects to be clustered are not known beforehand (as in
entire-trajectory – from now on – clustering algorithms), but have to be
identified through a trajectory segmentation procedure. Efforts that try to
deal with this problem in a centralized way do exist. More specifically, an
approach that segments the trajectories based on their geometric features,
and then clusters them by ignoring the temporal dimension is presented
in [49]. Instead, the authors in [70] take into account the temporal dimension,
and the segmentation of a trajectory takes place whenever the density of

152



7.1. Introduction

its spatiotemporal “neighborhood” changes significantly. The segmentation
phase is followed by a sampling phase, where the most representative sub-
trajectories are selected and finally the clusters are built “around” these
representatives. A similar approach is adopted in [3], where the goal is to
identify common portions between trajectories,with respect to some con-
straints and/or objectives, thus taking into account the “neighborhood” of
each trajectory. These common subtrajectories are then clustered and each
cluster is represented by a pathlet, which is a point sequence that is not
necessarily a subsequence of an actual trajectory.

Unfortunately, applying centralized algorithms for subtrajectory clustering
(e.g., [70, 49, 3]) over massive data in a scalable way is far from straightforward.
This calls for parallel and distributed algorithms that address the scalability
requirements. In this context, one challenge is how to partition the data in
such a way so that each node can perform its computation independently,
thus minimizing the communication cost between nodes, which is a cost
that can turn out to be a serious bottleneck. Another challenge, related
to partitioning, is how to achieve load balancing, in order to balance the
load fairly between the different nodes. Yet another challenge is to minimize
the iterations of data processing, which are typically required in clustering
algorithms. Interestingly, there have been some recent efforts towards mining
mobility data in a distributed way, such as mining co-movement patterns [28],
identifying frequent patterns [79] or adapting already existing distributed
solutions to trajectory data [21], yet no approach for distributed subtrajectory
clustering exists as of now.

Motivated by these limitations, we study the Distributed Subtrajectory Clus-
tering (DSC) problem, which has not been addressed yet in a scalable and
efficient way. Moreover, salient features of our approach include: (a) the
discovery of clusters of subtrajectories, instead of whole trajectories, (b) spa-
tiotemporal clustering, instead of spatial only, and (c) support of trajectories
with variable sampling rate, length and with temporal displacement.

Our main contributions are the following:

• We formally define the problem of Distributed Subtrajectory Clustering,
investigate its properties and discuss the main challenges.

• We propose two neighborhood-aware trajectory segmentation algo-
rithms, which are tailored to DSC problem, covering different applica-
tion requirements.

153



Chapter 7. Scalable Distributed Subtrajectory Clustering

• We design an efficient and scalable solution for the problem of Dis-
tributed Subtrajectory Clustering.

• We perform an extensive experimental study, where the performance
and the effectiveness of the proposed algorithms is evaluated by using a
synthetic and two large, real trajectory datasets from different domains
(urban and maritime). The merits of our solution are demonstrated with
respect to two state of the art subtrajectory clustering algorithms, [70]
and [49].

The rest of the chapter is organized as follows. In Section 7.2 we introduce
the DSC problem, in Section 7.3 we present our proposed solution and in
Section 7.4 we perform a complexity analysis of the algorithms that constitute
our solution. Then, in Section 7.5, we present the results of our experimental
study. Finally, we conclude the chapter in Section 7.6.

7.2 Problem Formulation

Given a set D of moving object trajectories, a trajectory r ∈ D is a sequence
of timestamped locations {r1, . . . , rN}. Each ri = (loci, ti) represents the i-th
sampled point, i ∈ 1, . . . , N of trajectory r, where N denotes the length of r
(i.e. the number of points it consists of). Moreover, loci denotes the spatial
location (2D or 3D) and ti the time coordinate of point ri, respectively. A
subtrajectory ri,j is a sub-sequence {ri, . . . , rj} of r which represents the
movement of the object between ti and tj where i < j and i, j ∈ 1, . . . , N .
Let ds(ri, sj) denote the spatial distance between two points ri ∈ r, sj ∈ s. In
our case we adopted the Euclidean distance, however, other metric distance
functions might be applied. Also, let dt(ri, sj) denote the temporal distance,
defined as |ri.t − sj .t|. Furthermore, let ∆tr symbolize the duration of
trajectory r (similarly for subtrajectories).

7.2.1 Similarity between (sub)trajectories

Subtrajectory clustering relies on the use of a similarity function between
subtrajectories. Although various similarity measures have been defined in
literature, our choice of similarity function is motivated by the following
(desired) requirements:

Variable sampling rate and lack of alignment. We make the realistic

154



7.2. Problem Formulation

assumption that the trajectories do not have a fixed sampling rate and that
different trajectories might not report their position at the same timestamp.

Variable trajectory length. We also assume that different trajectories
might have different length (i.e. number of samples). This specification
excludes euclidean-based similarity measures which deal with trajectories
of equal length.

Temporal displacement. A property that a desired similarity measure
for (sub)trajectory clustering should hold, is to allow trajectories that have
some temporal displacement to participate to the same cluster.

Symmetry. Given a pair of (sub)trajectories r and s, an appropriate
similarity measure between r and s should have the property of symmetry
(i.e. Sim(r, s)=Sim(s, r)).

Efficiency. The computation of the similarity should be efficient enough in
order to be able to deal with massive volumes of data, without compromising
the quality of the results.

In order to meet with the aforementioned specifications we utilize the Longest
Common Subsequence (LCSS) for trajectories, as defined in [97]. However,
other trajectory similarity functions, which meet with the specifications set,
are also applicable. More specifically, the LCSS utilizes two parameters, the
parameter εt indicating the temporal range wherein the method searches to
match a specific point, and the εsp parameter which is a distance threshold
to indicate whether two points match or not. Hence, the similarity between
two (sub)trajectories r and s is defined as:

Sim(r, s) =
LCSSεt,εsp(r, s)
min(|r|, |s|) (7.1)

where |r| (|s|) is the length of r (s respectively). Moreover, it holds that
Sim(r, s) = Sim(s, r).

However, LCSS returns the length of the longest common subsequence, which
means that for a given point ri ∈ r that is matched with a specific point
sj ∈ s the LCSS will consider the similarity between ri and sj as 1, regard-
less of their actual distance ds(ri, sj), which could vary from 0 to εsp. Put
differently, LCSS considers as equally similar all the points that exist within
an εsp range from r, which is a fact that might compromise the quality of the

155



Chapter 7. Scalable Distributed Subtrajectory Clustering

clustering results. Ideally, given two matching points ri ∈ r and sj ∈ s, sj
(ri, respectively) should contribute to LCSSεt,εsp(r, s), proportionally to the
distance ds(ri, sj). For this reason, we propose a “weighted” LCSS similarity
between trajectories, that incorporates the aforementioned distance propor-
tionality. In more detail, for each discovered longest common subsequence
the similarity is defined as:

Sim(r, s) =

min(|r|,|s|)∑
k=1

(1− ds(rk,sk)
εsp

)

min(|r|, |s|) (7.2)

where (rk, sk) is a pair of matched points.

7.2.2 A Closer Look to the Subtrajectory Clustering Prob-
lem

Our approach to subtrajectory clustering splits the problem in three steps.
The first step is to retrieve for each trajectory r ∈ D, all the moving objects,
with their respective portion of movement, that moved close enough in space
and time with r, for at least some time duration. Actually, this first step is a
well-defined problem in the literature of mobility data management, known
as subtrajectory join, and more specifically the case of self-join. In detail,
the subtrajectory join will return for each pair of (sub)trajectories, all the
common subsequencies that have at least some time duration, which are
actually candidates for the longest common subsequence. Formally:

Problem 7.1. (Subtrajectory Join) Given a temporal tolerance εt, a
spatial threshold εsp and a time duration δt, retrieve all pairs of subtrajectories
(r′, s′) ∈ D such that: (a) for each pair ∆tr′ ,∆ts′ ≥ δt, (b) ∀ri ∈ r′ there
exists at least one sj ∈ s′ so that ds(ri, sj) ≤ εsp and dt(ri, sj) ≤ εt, and
(c) ∀sj ∈ s′ there exist at least one ri ∈ r′ so that ds(sj , ri) ≤ εsp and
dt(sj , ri) ≤ εt.

Figure 7.2 illustrates two trajectories r and s and their respective matching
subtrajectories (r4,8, s3,7). Each point of a trajectory defines a spatiotemporal
’neighborhood’ area around it, i.e. a cylinder of radius εsp and height εt. In
order for a pair of subtrajectories to be considered matching, each point
of a subtrajectory must have at least one point of the other subtrajectory
in its neighborhood, thus making the result symmetrical. Furthermore the

156



7.2. Problem Formulation

≥
 δ
t

εsp

ε t

t

r s

r1

r2

r3

r4

r5

r6

r7

r8

r9
r10

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Figure 7.2: A pair of “matching” subtrajectories (r4,8, s3,7).

duration of the match should be at least δt.

The second step takes as input the result of the first step, which is actually a
trajectory and neighboring trajectories and aims at segmenting each trajectory
r ∈ D into a set of subtrajectories. The way that a trajectory is segmented
into subtrajectories is neighbourhood-aware, meaning that a trajectory will
be segmented every time its neighbourhood changes significantly, so as to
result in homogeneous subtrajectories (with respect to their surrounding
moving objects). Returning to Example 7.1, trajectory A → D should
be segmented to A → O and O → D, since at O the cardinality and the
composition of its neighbourhood changes significantly. The problem of
trajectory segmentation can now be formulated as follows.

Problem 7.2. (Trajectory Segmentation) Given a trajectory r, identify
the set of timestamps CP (cutting points), where the density (or alternatively
the composition) of the neighborhood of r changes significantly. Then accord-
ing to CP , r is partitioned to a set of subtrajectories {r′1, . . . , r′M}, where
M = |CP |+ 1 is the number of subtrajectories for a given trajectory r, such
that r =

⋃M
k=1 r

′
k and k ∈ [1,M ].

Given the output of Problem 7.1, applying a trajectory segmentation al-
gorithm for the trajectories D will result in a new set of subtrajectories
D′.

The third step takes as input D′ and the goal is to create clusters (whose
cardinality is unknown) of similar subtrajectories and at the same time iden-

157



Chapter 7. Scalable Distributed Subtrajectory Clustering

tify subtrajectories that are significantly dissimilar from the others (outliers).
More specifically, let C = {C1, . . . , CK} denote the clustering, where K is the
number of clusters, and for every pair of clusters Ci and Cj , with i, j ∈ [1,K],
it holds that Ci ∩ Cj = Ø. Now, let us assume that each cluster Ci ∈ C is
represented by one subtrajectory Ri ∈ Ci, called Representative. Further-
more, let R denote the set of all representatives. Actually, the problem of
clustering is to discover clusters of objects such that the intra-cluster similar-
ity is maximized and the inter-cluster similarity is minimized. Therefore, if
we ensure that the similarity between the representatives is zero, then the
problem of subtrajectory clustering can be formulated as an optimization
problem as follows.

Problem 7.3. (Subtrajectory Clustering and Outlier Detection) Given
a set of subtrajectories D′, partition D′ into a set of clusters C and a set of
outliers O, where D′ = C ∪O, in such a way so that the Sum of Similarity
between Cluster members and cluster Representatives (SSCR) is maximized:

SSCR =
∑
∀Ri∈R

∑
∀r′j∈Ci

Sim(Ri, r′j) (7.3)

However, trying to solve Problem 7.3 by maximizing Equation (7.3) is not
trivial, since the problem to segment trajectories to subtrajectories, select
the set of representatives R and its cardinality |R| that maximizes Equation
(7.3), has combinatorial complexity.

7.2.3 Distributed Subtrajectory Clustering

In this chapter, we address the challenging problem of subtrajectory clustering
in a distributed setting, where the dataset D is stored distributed in different
nodes, and centralized processing is prohibitively expensive.

Problem 7.4. (Distributed Subtrajectory Clustering) Given a dis-
tributed set of trajectories, D = ∪Pi=1Di, where P is the number of partitions
of D, perform the subtrajectory clustering task in a parallel manner.

Actually, Problem 7.4 can be broken down to solving Problems 7.1, 7.2 and
7.3 (in that order) in a parallel/distributed way. In the following, we adopt
this approach and outline a solution that is based on MapReduce.

158



7.3. Problem Solution

7.3 Problem Solution

7.3.1 Overview

An overview of our approach is presented in Algorithm 7.1 and illustrated in
Figure 7.3. Initially, we Repartition the data into P equi-sized, temporally-
sorted partitions (files), which are going to be used as input for the join
algorithm in order to perform the subtrajectory join in a distributed way
(line 3). Note that this is actually a preprocessing step that only needs to
take place once for each dataset D.

Algorithm 7.1 DSC(D)
1: Input: D
2: Output: set C of clusters, set O of outliers
3: Preprocessing: Repartition D;
4: for each partition Di ∈ ∪Pi=1Di do
5: perform Point-level Join;
6: group by Trajectory;
7: for each Trajectory r ∈ D do
8: perform Subtrajectory Join; – Sect. 7.3.2
9: perform Trajectory Segmentation; – Sect. 7.3.3

10: group by Di;
11: for each subtrajectory r′ ∈ Di do
12: calculate Similarity with other subtrajectories; – Sect. 7.3.3
13: perform Clustering; – Sect. 7.3.4
14: perform Refine Results;
15: return C and O;

Subsequently, for each partition Di ∈ ∪Pi=1Di and trajectory we discover
parts of other trajectories that moved close enough in space an time (line 5).
Successively, we group by trajectory in order to perform the subtrajectory
join (line 8). At this phase, since our data is already grouped by trajectory,
we also perform trajectory segmentation in order to split each trajectory to
subtrajectories (line 9). In turn, we utilize the temporal partitions created
during the Repartition phase and re-group the data by temporal partition.
For each Di ∈ ∪Pi=1Di we calculate the similarity between subtrajectories
and perform the clustering procedure (line 12). If a subtrajectory intersects
the borders of two partitions, it is replicated in both of them. This results
in having duplicate and possibly contradicting results. For this reason, as
a final step, we treat this case by utilizing the Refine Results procedure
(line 14). Finally, a set C of clusters and O of outliers are produced.

159



Chapter 7. Scalable Distributed Subtrajectory Clustering

Eq
u

i-
d

e
p

th
 

H
is

to
gr

am
P

a
rt

it
io

n
 1

[t
1
,t

2
)

P
a

rt
it

io
n

 P
[t

P
-1

,t
P
]

. . .

ST
P

 
P

a
rt

it
io

n
 1

Tr
aj

ec
to

ry
 1

R
ef

in
e

()
Se

g
m

en
t(

)
Si

m
ila

ri
ty

()

Tr
aj

ec
to

ry
 2

R
ef

in
e

()
Se

gm
en

t(
)

Si
m

ila
ri

ty
()

Tr
aj

ec
to

ry
 L

R
ef

in
e

()
Se

g
m

en
t(

)
Si

m
ila

ri
ty

()

. .

R
e

d
u

ce
O

u
tp

u
t 

to
 H

D
FS

ST
P

 
P

a
rt

it
io

n
 2

ST
P

 
P

a
rt

it
io

n
 P

. . .ST
 P

a
rt

it
io

n
 1

ST
 

P
a

rt
it

io
n

 2

ST
 

P
a

rt
it

io
n

 P

In
p

u
t 

Sp
it

 
C

re
a

ti
o

n

. . .

Sp
lit

 1
Jo

in
(⋈

)

Sp
lit

 2
Jo

in
(⋈

)

Sp
lit

 M
Jo

in
(⋈

)

. .

M
a

p
G

ro
u

p
 b

y 
T

ra
je

ct
o

ry
 

&
 S

o
rt

 B
y 

t

Sp
lit

 1
 D

at
a

 
[t

1
-ε

t,t
2
+
ε t

)

Sp
lit

 2
 D

at
a

 
[t

2
-ε

t,t
3
+
ε t

)

Sp
lit

 P
 D

at
a

 
[t

P
-1

-ε
t,t

P
+
ε t

)

Sp
lit

 1
Si

m
ila

ri
ty

()
C

lu
st

er
in

g(
)

Sp
lit

 2
Si

m
ila

ri
ty

()
C

lu
st

er
in

g(
)

Sp
lit

 P
Si

m
ila

ri
ty

()
C

lu
st

er
in

g(
)

. .

M
a

p

G
ro

u
p

 b
y 

In
te

rs
e

ct
in

g 
o

r 
n

o
t 

&
 s

o
rt

 b
y 

P
a

rt
it

io
n

In
te

rs
e

ct
in

g
R

ef
in

eR
es

ul
ts

()

N
o

t 
In

te
rs

ec
ti

n
g

em
it

 R
es

u
lt

s(
)

R
e

d
u

ce

Jo
b

 1
Jo

b
 2

Fi
gu

re
7.
3:

T
he

D
SC

al
go

rit
hm

.
(J
ob

1)
D
T
J
an

d
Tr
aj
ec
to
ry

Se
gm

en
ta
tio

n
an

d
(J
ob

2)
C
lu
st
er
in
g
an

d
Re

fin
e
Re

su
lts
.

160



7.3. Problem Solution

7.3.2 Distributed Subtrajectory Join

As already mentioned, the first step is to perform the subtrajectory join in a
distributed way. For this reason, we exploit the work presented in Chapter 6,
coined DTJ, which introduces an efficient and highly scalable approach to
deal with Problem 7.1, by means of MapReduce.

7.3.3 Distributed Trajectory Segmentation

The Trajectory Segmentation algorithm (TSA) takes as input a single tra-
jectory, along with information about its neighborhood, and partitions it to
a set of subtrajectories. We have already presented a neighborhood-aware
trajectory segmentation algorithm in Section 3.3.1. However, the voting
function introduced in Equation 3.3 considers that the space is unbounded
(in our case the space is bounded by εsp) and, for this reason, it utilizes
an extra parameter, coined σ, in order to control how fast the “voting in-
fluence” decreases with distance. It turns out that setting parameter σ is
not a straightforward task and can affect significantly the outcome of the
segmentation procedure. Furthermore, the segmentation algorithm presented
in Section 3.3.1 takes into account only the density and not the actual com-
position of the neighborhood of a trajectory. For the above reasons, in this
chapter, we propose two alternative segmentation algorithms.

The first algorithm, coined TSA1, identifies the beginning of a new subtra-
jectory whenever the density of its neighborhood changes significantly. Such
a segmentation algorithm is reminiscent of the flock definition [48], where the
identified groups need to be composed of at least m objects. For this purpose,
we use the concept of voting as a measure of density of the surrounding area
of a trajectory. For a given point ri and any trajectory s, the voting V (ri) is
defined as:

V (ri) =
∑
∀s∈D

ds(ri, sk)
εsp

(7.4)

where, sk is the matching point of s with ri, as emitted by the subtrajectory
join procedure. For a trajectory r that consists of N points {r1, . . . , rN}, we
compute its normalized voting vector V (r) as follows:

V (r)[] = { V (r1)
maxNi=1 V (ri)

, . . . ,
V (rN )

maxNi=1 V (ri)
} (7.5)

161



Chapter 7. Scalable Distributed Subtrajectory Clustering

B

A

C

DO

(a)

B

A

C

DO

(b)

B

A

C

DO

(c)

Figure 7.4: (a) Five trajectories A → B, A → C, A → D, C → B and
D → B, (b) TSA1 segmentation, (c) TSA2 segmentation

Finally, the voting of a trajectory (or subtrajectory) is defined as:

V (r) = 1
N

N∑
i=1

V (ri) (7.6)

The difference of TSA1

The second segmentation algorithm, coined TSA2, identifies the beginning of
a new subtrajectory whenever the composition of its neighborhood changes
substantially. This segmentation algorithm is reminiscent of the moving
cluster definition [45], where the identified groups need to share a sufficient
number of common objects. Such an algorithm does not take as input the
V (r)[] but instead, for each point ri ∈ r, it takes as input a list L(ri)[] of the
trajectory ids that have been produced as output by the DTJ procedure.

The following example explains intuitively the difference between the two
segmentation algorithms.

Example 7.2. Consider the example of Figure 7.4(a) that illustrates five
trajectories: A→ B, A→ C, A→ D, C → B and D → B. Figures 7.4(b)
and (c) depict the result of TSA1 and TSA2, respectively. In more detail,
we can observe that both TSA1 and TSA2 segmented trajectory A → D

to subtrajectories A → O and O → D, due to the fact that after O, both
the density and the composition of the neighborhood changes. The same
holds for trajectories A → C, C → B and D → B, which are segmented
to subtrajectories A → O, O → C, C → O, O → B, D → O and O → B.
However, when it comes to trajectory A → B, we can observe that while
TSA2 segments it to subtrajectories A → O and O → B, TSA1 does not

162



7.3. Problem Solution

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

V
o
ti
n
g

Time

W1 W2

Figure 7.5: The two consecutive sliding windows W1 and W2 used by the
segmentation algorithms.

perform any segmentation. This is due to the fact that, after O, even though
the density of the neighborhood remains the same (i.e. 3 moving objects), the
composition of the neighborhood changes completely. In a subsequent step
this will drive the clustering algorithm to identify, in the case of TSA1 a
flock-like cluster from A to B, while in the case of TSA2 two moving clusters
from A to O and from O to B.

Both segmentation algorithms share a common methodology, which employs
two consecutive sliding windows W1 and W2 of size w (i.e. w samples) to
estimate the point ri ∈ CP (cutting point) where the “difference” between
the two windows is maximized. This methodology has been successfully
applied in the past on signal segmentation [63, 61]. To exemplify, let us
consider trajectory A→ D of Example 7.2. For simplicity, we assume that
the voting of the specific trajectory from A to O is 3 and from O to D is 1.
Figure 7.5 illustrates the two sliding windows W1 and W2 that traverse the
voting signal of trajectory A→ D.

Trajectory segmentation. Since the output of the DTJ algorithm is per
trajectory, it is straightforward to give it as input to TSA which operates
at the level of a trajectory. Moreover, the segmentation is performed in
an embarrassingly parallel way, due to the fact that each trajectory can be
processed by a different reduce task independently from others, as depicted in
Figure 7.3. In more detail, for a given trajectory r ∈ D, TSA1 first calculates
the normalized voting vector V (r)[] and then performs the segmentation
by utilizing it. Apart from V (r)[], the input of the TSA algorithm is two

163



Chapter 7. Scalable Distributed Subtrajectory Clustering

additional parameters: w and τ . The output is a vector CP [], which keeps
the starting position of each subtrajectory of r.

Algorithm 7.2 TSA1(V (r)[], w, τ)
1: Input: V (r)[], w, τ
2: Output: CP []
3: 1→ CP [];
4: for n = w+1 . . . N-w-1 do
5: m1 = 1

w

∑n−1
i=n−w V (r)[i];

6: m2 = 1
w

∑n+w−1
i=n V (r)[i];

7: d[n] = |m1 −m2|;
8: dmax = maxN−w−1

i=w+1 d[i];
9: if d[n] > τ ∧ d[n] >= dmax then

10: n→ CP [];

In more detail, as presented in Algorithm 7.2, two consecutive sliding windows
of size w are created over V (r)[], named W1 and W2 (line 4). These sliding
windows move forward in time until V (r)[] is traversed. Here, N is the
number of points of trajectory r ∈ D. Then, for each window, the average
normalized voting is computed (lines 5-6) and their absolute difference is
stored in d[], which is an array that stores all the differences between the
sliding windows (line 7). Subsequently, we examine whether the current
difference d[n] is larger than the maximum difference dmax and we update
dmax accordingly (line 8). Finally, if the difference d[n] is higher than a
threshold τ and is locally maximized, then, at that point, we segment the
trajectory and we store the starting position of the new subtrajectory to
CP [] (lines 9-10).

On the other hand, the input of TSA2 is a list of lists L(r)[] for each r ∈ D.
Similarly, two consecutive sliding windows W1 and W2 of size w are created
(line 4). Then, for each window, the union of lists is computed and stored
in l1 and l2, respectively (lines 5-6). Successively, the Jaccard dissimilarity
between l1 and l2 is computed and is stored to d[], which is an array that
stores all the similarities between the sliding windows (line 7). From then
on, the algorithm is identical to TSA1.

Similar subtrajectories. After trajectory segmentation, the next step is
to calculate the similarity between all the pairs of subtrajectories, using
Equation 7.2. This cannot be done completely after the segmentation at the
Reducer phase of Job 1, illustrated in Figure 7.3, because at that point each
reduce function has information only about the segmentation of the reference

164



7.3. Problem Solution

Algorithm 7.3 TSA2(L(r), w, τ)
1: Input: L(r), w, τ
2: Output: CP []
3: 1→ CP [];
4: for n = w+1 . . . N-w-1 do
5: l1 = ∪n−1

i=n−wL(ri)[];
6: l2 = ∪n+w−1

i=n L(ri)[];
7: d[n] = 1− |l1∩l2|

|l1|+|l2|−|l1∩l2| ;
8: dmax = maxN−w−1

i=w+1 d[i];
9: if d[n] > τ ∧ d[n] >= dmax then

10: n→ CP [];

trajectory to subtrajectories. For this reason, at this point we cannot calculate
the denominator of Equation 7.2. However, for each subtrajectory r′ ∈ r,
where r is the reference trajectory, we can calculate the similarity between
the matching points (enumerator of Equation 7.2).

In more detail the output of each reduce function (Job 1 Figure 7.3) is
a relation, called STP, which holds a set of key-value pairs of the form
< (r′.ID, s.ID), {(sf .t, Sim(sf , r′)) . . . (sl.t, Sim(sl, r′))} >, where sf , sl
are the temporal first and last point, respectively, of trajectory s that
“matches” with subtrajectory r′. Moreover, in a separate relation, coined ST,
we hold some extra information for each subtrajectory. More specifically,
the tuples of ST are key-value pairs, where the key is the subtrajectory
identifier < ID > and the value is of the form < ts, te, V, Card >, where ts
(te) is the starting time (ending time, respectively) of the subtrajectory, V is
the voting and Card is the number of points which constitute the specific
subtrajectory. Due to the fact that these two relations can be pretty large,
we need to partition them into smaller files. In order to achieve this, we
broadcast the load balanced temporal partitions that were created during
the Repartitioning phase of DTJ. As illustrated in Figure 7.3, each reducer
loads these partitions and assigns each subtrajectory (tuple of ST and STP)
to all the partitions with which it temporally intersects. Subsequently, the
tuples are grouped by temporal partition and each group is fed to a Mapper.

At this point, each Mapper has now all the information needed to calculate
the similarity between all the pairs of subtrajectories (Equation 7.2), for
each temporal partition separately. The similarity between subtrajectories
is output in a new relation, called SP. Each tuple of this relation holds
information about a subtrajectory r′ and its similarity with all the other

165



Chapter 7. Scalable Distributed Subtrajectory Clustering

subtrajectories, whenever this similarity is larger than zero. More specifically,
SP contains a set of key-value pairs where the key is the ID of the subtrajectory
(r′.ID) and the value is a list AdjLst containing elements of the form
(s′.ID, Sim), where s′ is a subtrajectory for which it holds that Sim(r′, s′) >
0.

7.3.4 Distributed Clustering

Clustering. After having calculated the similarity between all pairs of
subtrajectories for each temporal partition, we can proceed to the actual
clustering and outlier detection procedure. The output of the similarity
calculation process, namely SP , is actually an adjacency list. The intuition
behind the proposed solution to Problem 7.3 is to select as cluster repre-
sentatives, highly voted subtrajectories (Equation 7.6) that are not similar
with the already selected representatives Ri ∈ R. Then, we assign each
subtrajectory r′k to the Ri (and hence Ci) with which it has the maximum
similarity Sim(r′k, Ri).

Algorithm 7.4 Clustering(SP, ST, k, α)
1: Input: SP, ST, k, α
2: Output: set C of clusters, set O of outliers
3: sort ST by V in descending order;
4: for each element st ∈ ST do
5: if st 6∈ R then
6: if st.V ≥ k then
7: st→ R;
8: for each element l ∈ st.AdjLst do
9: if l 6∈ C then

10: if Sim(l, st) ≥ α then
11: l→ C(st);
12: if l ∈ O then
13: O = O − l;
14: else
15: O = O ∪ l
16: else
17: if Sim(l, st) > Sim(l, R(l)) then
18: C(R(l)) = C(R(l))− l;
19: l→ C(st);
20: else
21: O = O ∪ st;
22: C = C ∪R

166



7.3. Problem Solution

The input of the clustering algorithm is SP , ST and parameters k and α and
the output is the set of clusters C and the set of outliers O. More specifically,
k is a threshold for setting a lower bound on the voting of a representative.
This prevents the algorithm from identifying clusters with small support.
Parameter α is a similarity threshold used to assign subtrajectories to cluster
representatives. It ensures that a subtrajectory assigned to a cluster has
sufficient similarity with the representative of the cluster. This actually poses
a lower bound to the average distance between the representatives and the
cluster members and, consequently, guarantees a minimum quality in the
identified clusters (intra-cluster distance).

Lemma 7.1. The average distance ds(r′, s′), between a representative sub-
trajectory r′ and a cluster member s′ will always be at most εsp · (1− α).

ds(r′, s′) ≤ εsp · (1− α) (7.7)

Proof.

Sim(r′, s′) =

min(|r′|,|s′|)∑
k=1

(1− ds(r′k,s
′
k)

εsp
)

min(|r′|, |s′|)

Sim(r′, s′) =
min(|r′|, |s′|)−

min(|r′|,|s′|)∑
k=1

ds(r′k,s
′
k)

εsp

min(|r′|, |s′|)

But,

min(|r′|,|s′|)∑
k=1

ds(r′k, s′k) = min(|r′|, |s′|) · ds(r′, s′)

So, Sim(r′, s′) =
min(|r′|, |s′|)− min(|r′|,|s′|)·ds(r′,s′)

εsp

min(|r′|, |s′|)

Sim(r′, s′) =
min(|r′|, |s′|) · (1− ds(r′,s′)

εsp
)

min(|r′|, |s′|)

Sim(r′, s′) = 1− d(r′, s′)
εsp

But, Sim(r′, s′) ≥ α
So, ds(r′, s′) ≤ εsp · (1− α)

To begin with, we want to traverse the subtrajectories by their voting, in

167



Chapter 7. Scalable Distributed Subtrajectory Clustering

descending order (i.e. highly voted subtrajectories first). In order to achieve
this, we need to sort ST by V (line 3). Subsequently, for each subtrajectory
st ∈ ST we examine whether it is already assigned to cluster (line 5). If st
is not assigned to any cluster and the voting of st is less than k, then we
add st to the outliers set (line 21). Otherwise, we create a new cluster and
consider st as the representative (lines 6-7). Successively, we consult relation
SP and retrieve the adjacency list of st (line 8). Then, for each element
l that belongs to the adjacency list of st, we examine if it is assigned to
any cluster. If not, we investigate whether the similarity between l and st
is greater or equal than the similarity threshold α. If not, we add l to the
outlier set O, otherwise we assign it to the cluster led by st and remove it
from the outliers O, in case l ∈ O (lines 9-13). If l is assigned to a cluster,
we examine whether the similarity of l with st is greater than the similarity
with the representative of the cluster that l is currently assigned. If this
is the case, then we remove l from the current cluster and assign it to the
cluster led by st (lines 17-19). Finally, we concatenate C with R (line 22)
so as to return, except from the outlier set O, both cluster members and
representatives.

Refinement of Results. At this point we successfully accomplished to deal
with Problem 7.3 for each temporal partition. However, this might result in
having duplicates due to the fact that each subtrajectory that temporally
intersects multiple partitions is replicated to each one of them. The actual
problem that lies here is not the duplicate elimination problem itself but the
fact that the result for such a subtrajectory might be contradicting in different
partitions. In more detail, for each partition, the clustering procedure will
decide whether a subtrajectory is a Representative (Repr), a Cluster Member
(Cl) or an Outlier (Out). Hence, for each intersecting subtrajectory q and
for each pair of consecutive partitions (i, j) with which q intersects, q can
have the following pairs of states: (a) Out-Out, (b) Repr-Repr, (c) Cl-Cl,
(d) Repr-Cl (Cl-Repr), (e) Repr-O (O-Repr) and (f) Cl-O (O-Cl).

In order to implement the above procedure we need to have all the information
concerning the intersecting subtrajectories (C and O) for all the Partitions
sorted in time. To do this, we group the trajectories according to whether
they are intersecting or not. As illustrated in Figure 7.3, the non-intersecting
are emitted, since they are not affected, while the intersecting subtrajectories
get sorted by partition. Hence, a Reducer will receive all the required
information to make the appropriate decisions. In more detail, we sweep
through the temporal dimension and for each pair of consecutive partitions

168



7.4. Complexity Analysis

we make the appropriate decisions.

Algorithm 7.5 RefineResults(q)
1: Input: Intersecting Subtrajectories
2: Output: set C of clusters, set O of outliers
3: for each pair p → (Pi, Pi+1) of Partitions do
4: Pi ∩ Pi+1 → I
5: for each element e ∈ I do
6: switch (p)
7: case (a):
8: remove q from Oi;
9: case (b):

10: merge Ci(q) and Ci+1(q);
11: case (c):
12: if Sim(q,Ri(q)) > Sim(q,Ri+1(q)) then
13: remove q from Ci+1;
14: else
15: remove q from Ci;
16: case (d):
17: remove q from C;
18: case (e),(f):
19: remove q from O;
20: end switch

For each of the above cases, as depicted in Algorithm 7.5, a decision has
to be made, in order to eliminate duplicates and provide the correct result
according to the problem definition. More specifically, in case of (a), q
is marked as outlier in both partitions, hence, we only need to eliminate
duplicates. In case of (b), the two clusters are “merged”, since all of the
subtrajectories that belong to them are similar “enough” with q, which is the
representative of both clusters. In case of (c), let us assume that q belongs
to cluster Ci(R(q)) in Partition i and Ci+1(R(q)) in Partition i+ 1. Then,
q is assigned to the cluster with which it has the largest similarity with its
representative. In case of (d), q remains to be a cluster representative and is
removed from the cluster C in which it is a member. Finally, in case of (e)
and (f), q is removed from O.

7.4 Complexity Analysis

The purpose of this section is to analyse and provide insight to the complexity
of the different algorithms that are involved to the solution to the Distributed

169



Chapter 7. Scalable Distributed Subtrajectory Clustering

Subtrajectory Clustering problem, presented in this chapter.

DTJ : The complexity of the Join algorithm is roughly O(|D|log2Q), with Q
being the average number of points per spatial index partition and Q << |D|.
The complexity of the Refine algorithm is O(T · SW · dt · l), where T is the
average number of points per trajectory, SW is the average number of points
contained in a δt+ 2εt window, dt the average number of points contained in
a δt window and l is average the size of the MatchingPoints list. For more
details about the complexity of the algorithms involved in DTJ please refer
to [89].

Segmentation: The complexity of the TSA1 algorithm is O(l · |T |), where
l is average the size of the “matching” list and |T | is the average number of
points per trajectory. The reason that we include l to this analysis is that
in order to perform TSA1, we first need to calculate the normalized voting
vector. The complexity of the TSA2 algorithm is also O(l · |T |), since l1 and
l2 are already sorted by trajectory id and the list intersection can take place
in linear time to the size of the lists.

Clustering: The complexity of Clustering algorithm is O(|ST | · log|ST |+
|ST | · |L|), with |ST | being the number of subtrajectories, |L| the average size
of the adjacency list AdjLst and |ST | · log|ST | is the sorting cost. Here, we
should mention that |ST | << |D|. Furthermore, ST and SP are implemented
as HashMaps, hence key search has an O(1) time complexity. The complexity
of the RefineResults algorithm is O(M · |P | · |I|), where M is the number of
temporal partitions, |P | is the average number of intersecting subtrajectories
per partition and I is the average size of the intersection. We should mention,
here, that the intersection between two consecutive partitions is performed
in linear time by utilizing HashSets sets.

7.5 Experimental Study

In this section, we present the findings of our experimental evaluation. The
experiments were conducted in a 49 node Hadoop 2.7.2 cluster, provided
by okeanos1. The master node consists of 8 CPU cores, 8 GB of RAM and
60 GB of HDD while each slave node is comprised of 4 CPU cores, 4 GB
of RAM and 60 GB of HDD. Our configuration enables each slave node to
launch 4 containers, thus up to 192 tasks (Map or Reduce) can be launched

1IAAS service for the Greek Research and Academic Community https://okeanos.grnet.
gr/home/

170

https://okeanos.grnet.gr/home/
https://okeanos.grnet.gr/home/


7.5. Experimental Study

simultaneously. For our experimental study, we employed two real datasets
that will assist us to evaluate the performance, scalability and effectiveness of
our solution. Furthermore, we utilized a synthetic dataset that simulates the
case of Figure 7.1 in order to verify that our solution operates as anticipated,
given a dataset with a known ground truth. The real datasets are from two
different domains, namely the urban and the maritime domain. In more
detail, the first one, is SIS and the second one is Brest, as described in
Section 1.5.

Table 7.1: Parameters and default values (in bold) used in the experimental
study of Chapter 7

Parameter Values
(i) (ii) (iii) (iv) (v)

εsp (%) 10% 15% 20% 25% 30%
εt (%) 0% 25% 50% 75% 100%
δt (%) 0% 25% 50% 75% 100%
w 10 15 20 25 30
τ 0.2 0.4 0.6 0.8 1

α (in σ) -2 -1 0 1 2
k (in σ) -2 -1 0 1 2

Our experimental methodology is as follows: Initially, in Section 7.5.2 we
verify the correctness of our solution by applying it to a dataset with a known
ground truth and compare our findings with T-OPTICS [56], a well-known
entire trajectory clustering technique. Moreover, we compare our solution
with TraClus [49] and S2T-Clustering [70], two state of the art subtrajectory
clustering methods. Subsequently, in Section 7.5.3, we study the scalability
of our solution by varying (a) the dataset size, and (b) the number of cluster
nodes. Finally, in Section 7.5.4, we perform a sensitivity analysis in order to
evaluate the effect of setting different values to the parameters of our solution,
in terms of execution time and quality. Table 7.1 shows the experimental
setting, where we vary the following parameters: εsp, εt, δt, w, τ , α and
k and measure their effect in the performance and the effectiveness of our
algorithms. We should mention that the default segmentation algorithm in
our experimental study is TSA1.

7.5.1 Parameter Setting

Setting the different parameters for different datasets can turn out to be
an arbitrary procedure, which, in turn, can jeopardise the quality of the

171



Chapter 7. Scalable Distributed Subtrajectory Clustering

clustering results. For this reason, we provide some simple rules for setting the
parameters relatively to the dataset being clustered, that do not compromise
the quality of the results. In more detail, εsp can be set as a percentage of
the dataset diameter. This, however, can be problematic when dealing with
datasets having large spatial variation in their density (e.g., ports in the
maritime domain). For this reason, we utilized the partitioning provided by
the spatial index (QuadTree) of DTJ and calculated εsp for each point, as a
percentage of the diameter of the cell of the QuadTree to which it belongs.
Moreover, εt and δt are calculated relatively to the average duration between
two consecutive trajectory samples (≈ 1200 sec for SIS and ≈ 950 sec for
AIS Brest).

Parameter w sets the size of the windows W1 and W2 upon which some
measure is calculated. Small values on w can affect the robustness of the
estimation, thus resulting to over-segmentation. On the other hand, large
values of w can result to overlooking some cutting points due to the large
window size. It has been observed that for w ≈ 20 the robustness of the
estimation is not affected and the size of the window is small enough so as
not to overlook any cutting points. Concerning parameter τ , our experiments
show that the best result in terms of quality is achieved for τ ≈ 0.4 Finally,
the values of α and k can be set “around” the mean value of the similarity
and the voting of the temporal partition, respectively, in terms of standard
deviation. In fact, it has been observed that the average similarity and voting
can produce clustering results of good quality. For more details about the
effect, in terms of quality, of setting different values to the parameters of our
solution, please refer to Section 7.5.4

7.5.2 Comparison with related work

Initially, so as to verify that our solution operates as expected, we utilize a
synthetic dataset2 that simulates the case of Figure 7.1. The only difference
is that the two outliers mentioned there (O → A and O → B), will now form
clusters. Hence, the ground truth for the synthetic cluster becomes A→ O,
B → O, O → C, O → D, O → A and O → B.

In fact, as depicted in Figure 7.6(a), T-OPTICS identifies the six original
routes: A → B (in red), A → C (in blue), A → D (in orange), B → A

(in yellow), B → C (in light blue) and B → D (in purple). On the other

2The original dataset was found in [55]

172



7.5. Experimental Study

A

B

C D
O

(a)
A

B

C
D

O

(b)

Figure 7.6: Identified clusters by (a) T-OPTICS and (b) DSC

hand, DSC identifies, with Accuracy = 100% and F -measure = 1, the six
expected clusters of subtrajectories: A → O(in red), B → O (in yellow),
O → C (in blue), O → D (in light blue), O → A (in purple) and O → B (in
green).

Subsequently, we compare DSC with two state of the art subtrajectory clus-
tering algorithms, S2T-Clustering and TraClus. The metric that we employ
in order to evaluate the quality of the outcome of the clustering procedure is
the well-known RMSE metric, which is actually a measure of intra-cluster
distance between the representatives and the cluster members. Hence the
larger the RMSE, the higher the intra-cluster distance and consequently the
lower the quality of the clustering. It is obvious that, under this definition,
RMSE is equivalent to SSRC (Equation 7.3). In order to perform this ex-
periment, we utilized the 20% of each dataset which was further partitioned
in 4 portions (25%, 50%, 75%, 100%). This choice was necessary because
the centralized implementations of S2T-Clustering and TraClus could not
scale with the full size of the datasets that we utilized.

As illustrated in Figure 7.7, DSC outperforms, in terms of RMSE, both
TraClus and S2T-Clustering. In more detail, TraClus presents the largest
RMSE which is somehow anticipated, since the specific algorithm utilizes
a density-based approach to cluster subtrajectories, which in turn, through
cluster expansion, can lead to spatially extended clusters. On the other hand,
S2T-Clustering presents smaller RMSE than TraClus, due to the fact that
it adopts a distance-based approach and discovers more compact clusters.
However, DSC results in smaller RMSE than S2T-Clustering, mostly due

173



Chapter 7. Scalable Distributed Subtrajectory Clustering

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

25% 50% 75% 100%

R
M

S
E

 (
in

 1
0

3
 m

)

Data Percentage

DSC−AIS Brest
S

2
T−Clustering−AIS Brest

TraClus−AIS Brest

DSC−SIS
S

2
T−Clustering−SIS

TraClus−SIS

Figure 7.7: Comparison of the RMSE metric between DSC, S2T-Clustering
and TraClus

to the fact that in the latter, two trajectories might end-up in the same
cluster even if they have small “matching portions”. However, in DSC this
“matching portions” should have a minimum (δt) duration.

7.5.3 Performance and Scalability

Initially, we vary the size of our datasets and measure the execution time
of our algorithms. We show the impact of the individual steps: Join, RSE,
Clustering and RefineResult using stacked bars. To study the effect of dataset
size, we created 4 portions (20%, 40%, 60%, 80%) of the original datasets.
RSE stands for the Refine and Segmentation procedure (Figure 7.3, Job
1, Reduce phase). As illustrated in Figures 7.8(a) and (b), as the size of
the dataset increases, DSC appears to scale linearly. Subsequently, we keep
the size of the datasets fixed (at 100%) and vary the number of nodes. As
the number of nodes increases and the dataset size remains the same, it
is expected that the execution time will decrease. Indeed, as depicted in
Figures 7.8(c) and (d), as the number of nodes increases, DSC presents linear
speedup. This linear behaviour, is somehow anticipated due to the fact that
the DSC approach is dominated by DTJ, in terms of execution time, which
presents linear speedup, as shown in [89].

Investigating further the performance of the different steps of our proposal,
we can observe that, as expected, the execution time of the whole procedure
is dominated by the Join step (Figure 7.3, Job 1, Map phase), followed
by RSE. Finally, as anticipated, the Clustering and the RefineResults step
(Figure 7.3, Job 2) present very good performance, since the computationally

174



7.5. Experimental Study

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

20% 40% 60% 80% 100%

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 1

0
3
 s

e
c
)

Data Percentage

AIS Brest

Join
RSE

Clustering
RefineResults

(a)

 0

 2

 4

 6

 8

 10

 12

20% 40% 60% 80% 100%

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 1

0
3
 s

e
c
)

Data Percentage

SIS

Join
RSE

Clustering
RefineResults

(b)

 0

 1

 2

 3

 4

 5

 6

 7

12 24 36 48

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 1

0
3
 s

e
c
)

# of Nodes

AIS Brest

Join
RSE

Clustering
RefineResults

(c)

 0

 5

 10

 15

 20

 25

 30

 35

12 24 36 48

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 1

0
3
 s

e
c
)

# of Nodes

SIS

Join
RSE

Clustering
RefineResults

(d)

Figure 7.8: Scalability analysis varying the size of the (a) AIS Brest and
(b) SIS dataset and the number of nodes over the (c)AIS Brest and (d) SIS
dataset

intensive part of the similarity matrix calculation has already been done as
part of the previous steps.

7.5.4 Sensitivity Analysis

In this section, we perform a sensitivity analysis of all the involved parameters.
More specifically, we vary each parameter presented in Table 7.1, while
keeping the rest of them in their default value (bold), and we measure their
effect in the execution time and the quality of the clustering results, in
terms of RMSE. Figures 7.9(a) and (b) show that the parameters that
appear to have a significant impact on execution time are εt and εsp. This
is justified from the fact that these parameters actually affect significantly
the complexity of the Join step (Figure 7.3, Job 1, Map phase), which is the
dominant cost of DSC. Another parameter that seems to have a perceivable

175



Chapter 7. Scalable Distributed Subtrajectory Clustering

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

(i) (ii) (iii) (iv) (v)

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 1

0
3
 s

e
c
)

Parameter value

AIS Brest

εsp
εt
δt

wtsa
1

τtsa
1

wtsa
2

τtsa
2

α

k

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

(i) (ii) (iii) (iv) (v)

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 1

0
3
 s

e
c
)

Parameter value

SIS

εsp
εt
δt

wtsa
1

τtsa
1

wtsa
2

τtsa
2

α

k

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

(i) (ii) (iii) (iv) (v)

R
M

S
E

 (
in

 1
0

3
 m

)

Parameter value

AIS Brest

εsp
εt
δt

wtsa
1

τtsa
1

wtsa
2

τtsa
2

α

k

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

(i) (ii) (iii) (iv) (v)

R
M

S
E

 (
in

 1
0

3
 m

)

Parameter value

SIS

εsp
εt
δt

wtsa
1

τtsa
1

wtsa
2

τtsa
2

α

k

(d)

Figure 7.9: Sensitivity analysis in terms of execution time of (a) the AIS
Brest and (b) the SIS dataset and in terms of RMSE of (c) the AIS Brest
and (d) the SIS dataset

effect on the execution time, is δt, which in fact “filters” the results of DTJ,
thus fewer data reach the next steps.

Regarding the quality of the clustering results, as illustrated in Figure 7.9(c)
and (d), all the parameters seem to have an effect over it. In more detail,
the larger the values of εt and εsp, the larger the RMSE. This behaviour is
expected since we allow objects that are further away from a representative
to participate to the same cluster. In contrast, as δt increases, the RMSE
decreases, which is also anticipated since it sets a lower bound to the longest
common subsequence. Furthermore, all the parameters that control the seg-
mentation have the same effect on the RMSE, i.e. the smaller (in length) the
subtrajectories, the smaller the RMSE. This shows that breaking trajectories
to subtrajectories has a positive effect on the quality of the clustering and
justifies the motivation of our work. Moreover, as α increases the RMSE
decreases, since for small values of α, less similar objects are allowed to

176



7.6. Summary

participate in a cluster. Finally, the larger the k the smaller the RMSE, since
it disallows the identification of clusters with small support.

7.6 Summary

In this chapter, we addressed the problem of Distributed Subtrajectory Clus-
tering by building upon a scalable subtrajectory join query operator in order
to tackle the problem in an efficient manner. Subsequently, we proposed
two alternative trajectory segmentation algorithms. Finally, we proposed a
distributed clustering algorithm where the clusters are identified in a par-
allel manner and get refined as a final step. Our experimental study was
performed on a synthetic and two large real datasets of trajectories from the
urban and the maritime domain.

177





Part IVOutlook

179





8 Conclusions

In this chapter, we summarize the contributions of this thesis and point to
future research directions.

In Part II, we discussed the problem of subtrajectory clustering and outlier
detection in trajectory databases. In more detail, in Chapter 3, we proposed
a novel subtrajectory clustering algorithm, namely S2T-Clustering, that is
novel not only because it solves the problem more effectively than the state-
of-the-art (namely, TRACLUS), but also due to the fact that our proposal is
designed in-DBMS, i.e., it is registered as a query operator in a real MOD
engine over an extensible DBMS (namely, PostgreSQL in our prototype im-
plementation). Having such functionality in their hands, data scientists are
able to perform cluster analysis via simple SQL in a real DBMS. Moreover,
in Chapter 4, we introduced the temporally-constrained subtrajectory cluster
analysis problem. To address it, we proposed ReTraTree, an indexing scheme
which organizes trajectories by using an effective spatiotemporal partitioning
technique. Partitions in ReTraTree correspond to groupings of subtrajecto-
ries, which are incrementally maintained and represented via a hierarchical
organization of a small (thus, light-weight in-memory) set of ‘representative’
subtrajectories. Given this, the problem in hand can be efficiently solved
as a query operator on ReTraTree, coined QuT-Clustering. Our approach
further contributes to the mobility data management and mining domain
for the additional reason that it has been designed and implemented in a
MOD engine. Such functionality enables the application users to perform
progressive cluster analysis via simple SQL in real extensible DBMS. Finally
in Chapter 5, we proposed an efficient in-DBMS architecture for progressive
time-aware subtrajectory cluster analysis, by utilizing the work done in
Chapter 3 and 4 along with a Visual Analytics (VA) tool to facilitate real
world analysis.

181



Chapter 8. Conclusions

Recognizing the limitations imposed by the Big Data era of the work proposed
in Part II, in Part III, we dealt with the problem at hand, in a distributed
and highly scalable way by utilizing the popular MapReduce programming
paradigm. In more detail, in Chapter 6, we introduced the Distributed
Subtrajectory Join query, an important operation in the spatiotemporal data
management domain, where very large datasets of moving object trajectories
are processed for analytic purposes. To address this problem in an efficient
manner we followed the MapReduce programming model by proposing a
well-designed basic solution and two efficient improvements, called DTJr and
DTJi which boosted the performance by up to 16× and 10×, respectively.
Our experimental study was performed on IMIS, a very large real dataset
of trajectories from the maritime domain, consisting of 56 GB of data (or
1.5 billion time-stamped locations), which showed that our proposal scales
linearly to the size of the dataset and the number of processing nodes.
Finally, in Chapter 7, we addressed the problem of Distributed Subtrajectory
Clustering by building upon the Distributed Subtrajectory Join query in order
to tackle the problem in an efficient manner. Subsequently, we proposed
two alternative trajectory segmentation algorithms. Finally, we proposed a
distributed clustering algorithm where the clusters are identified in a parallel
manner and get refined as a final step. Our experimental evaluation, which
was performed on a synthetic (CrossSection) and two large real datasets of
trajectories from the urban (SIS) and the maritime domain (Brest), showed
that our proposal scales linearly to the size of the dataset and the number
of processing nodes. Regarding the quality of the clustering results, it was
shown that our solution outperforms, in terms of RMSE, both TraClus and
S2T-Clustering, two state of the art subtrajectory clustering algorithms.

182



9 Ideas for Future Work

In this chapter, we present ideas and potential directions for future work.

Concerning the temporally-constrained subtrajectory cluster analysis problem,
although our proposal presented in Chapter 4 is orders of magnitude more
efficient than state-of-the-art spatial DBMS, the execution time of a clustering
analysis for a big dataset is not satisfactory. Thus, a limitation of our
approach is that it is not directly applicable to big datasets. To this end, in
the future, we plan to investigate real-time solutions, exploiting on modern
in-memory big data architectures.

Regarding the Distributed Subtrajectory Join, we plan to investigate how the
solution provided in Chapter 6 can be applicable to streaming trajectories.
Moreover, we plan to examine how this query can be extended and utilized in
order to be able to identify efficiently various mobility patterns (e.g., flocks,
convoys, moving clusters swarms etc.) over massively distributed data. We
also plan to investigate the potential of extending the solution proposed in
Chapter 6 to tackle the problem of k-nn trajectory join.

As far as it concerns the Distributed Subtrajectory Clustering problem, pre-
sented in Chapter 7, we plan to extend our solution with properties of density-
based clustering algorithms. Furthermore, since our algorithm employs a
single pass from the data we will investigate the possibility of addressing the
same problem in a streaming environment.

Finally, we plan to investigate the problem of distributed online monitoring
of mobility patterns. The goal will be to build a framework that, given a
massive stream of mobility data, will be able to monitor and record various
kinds of mobility patterns (flocks, convoys, moving clusters etc.), based on

183



Chapter 9. Ideas for Future Work

the concept of (sub)trajectory similarity and clustering, in real time.

184



Bibliography

[1] Hermes@PostgreSQL MOD engine. URL:
http://infolab.cs.unipi.gr/hermes.

[2] P. Ramsey (on behalf of PostGIS), personal communication.

[3] P. K. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Taylor.
Subtrajectory clustering: Models and algorithms. In PODS, pages
75–87, 2018.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE,
pages 3–14, 1995.

[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz.
Hadoop-gis: A high performance spatial data warehousing system over
mapreduce. PVLDB, 6(11):1009–1020, 2013.

[6] G. L. Andrienko, N. V. Andrienko, P. Bak, D. A. Keim, and S. Wrobel.
Visual Analytics of Movement. Springer, 2013.

[7] G. L. Andrienko, N. V. Andrienko, S. Rinzivillo, M. Nanni, and D. Pe-
dreschi. A visual analytics toolkit for cluster-based classification of
mobility data. In SSTD, pages 432–435, 2009.

[8] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander. OPTICS:
ordering points to identify the clustering structure. In SIGMOD, pages
49–60, 1999.

[9] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Effi-
cient trajectory joins using symbolic representations. In MDM, pages
86–93, 2005.

[10] P. Bakalov, M. Hadjieleftheriou, and V. J. Tsotras. Time relaxed
spatiotemporal trajectory joins. In ACM-GIS, pages 182–191, 2005.

185



Bibliography

[11] P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory
joins. In GSN, pages 109–128, 2006.

[12] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting
flock patterns. Comput. Geom., 41(3):111–125, 2008.

[13] K. Buchin, M. Buchin, M. J. van Kreveld, and J. Luo. Finding long
and similar parts of trajectories. Comput. Geom., 44(9):465–476, 2011.

[14] M. Buchin, A. Driemel, M. J. van Kreveld, and V. Sacristán. An
algorithmic framework for segmenting trajectories based on spatio-
temporal criteria. In SIGSPATIAL, pages 202–211, 2010.

[15] H. P. Chen, U. Dayal, and M. Hsu. Prefixspan,: mining sequential
patterns efficiently by prefix-projected pattern growth. In ICDE, 2001.

[16] L. Chen, Y. Gao, Z. Fang, X. Miao, C. S. Jensen, and C. Guo. Real-time
distributed co-movement pattern detection on streaming trajectories.
PVLDB, 12(10):1208–1220, 2019.

[17] Y. Chen and J. M. Patel. Design and evaluation of trajectory join
algorithms. In SIGSPATIAL, pages 266–275, 2009.

[18] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive
storage system for very large trajectory data sets. In ICDE, pages
109–120, 2010.

[19] V. T. de Almeida, R. H. Güting, and T. Behr. Querying moving objects
in SECONDO. In MDM, page 47, 2006.

[20] J. Dean and S. Ghemawat. Mapreduce: a flexible data processing tool.
Commun. ACM, 53(1):72–77, 2010.

[21] Z. Deng, Y. Hu, M. Zhu, X. Huang, and B. Du. A scalable and
fast OPTICS for clustering trajectory big data. Cluster Computing,
18(2):549–562, 2015.

[22] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of
large sets of moving object trajectories. In TIME, pages 79–87, 2008.

[23] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao. Ultraman: A
unified platform for big trajectory data management and analytics.
PVLDB, 11(7):787–799, 2018.

[24] S. Dodge, R. Weibel, and A. Lautenschütz. Towards a taxonomy of
movement patterns. Information Visualization, 7(3-4):240–252, 2008.

186



Bibliography

[25] C. Doulkeridis and K. Nørvåg. A survey of large-scale analytical query
processing in mapreduce. VLDB J., 23(3):355–380, 2014.

[26] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework
for spatial data. In ICDE, pages 1352–1363, 2015.

[27] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
pages 226–231, 1996.

[28] Q. Fan, D. Zhang, H. Wu, and K. Tan. A general and parallel platform
for mining co-movement patterns over large-scale trajectories. PVLDB,
10(4):313–324, 2016.

[29] Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. S. Yang. Scalable
algorithms for nearest-neighbor joins on big trajectory data. IEEE
Trans. Knowl. Data Eng., 28(3):785–800, 2016.

[30] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva. Vector
field k-means: Clustering trajectories by fitting multiple vector fields.
Comput. Graph. Forum, 32(3):201–210, 2013.

[31] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar
trajectory search. In ICDE, pages 816–825, 2007.

[32] S. Fries, B. Boden, G. Stepien, and T. Seidl. Phidj: Parallel similarity
self-join for high-dimensional vector data with mapreduce. In ICDE,
pages 796–807, 2014.

[33] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of
regression models. In SIGKDD, pages 63–72, 1999.

[34] F. García-García, A. Corral, L. Iribarne, M. Vassilakopoulos, and
Y. Manolopoulos. Enhancing spatialhadoop with closest pair queries.
In ADBIS, pages 212–225, 2016.

[35] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo,
and R. Trasarti. Unveiling the complexity of human mobility by
querying and mining massive trajectory data. VLDB J., 20(5):695–719,
2011.

[36] F. Giannotti and D. Pedreschi, editors. Mobility, Data Mining and
Privacy - Geographic Knowledge Discovery. Springer, 2008.

187



Bibliography

[37] J. Gudmundsson and M. J. van Kreveld. Computing longest duration
flocks in trajectory data. In ACM-GIS, pages 35–42, 2006.

[38] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering
algorithm for large databases. Inf. Syst., 26(1):35–58, 2001.

[39] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos.
Indexing spatiotemporal archives. VLDB J., 15(2):143–164, 2006.

[40] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search
trees for database systems. In VLDB, pages 562–573, 1995.

[41] C. Hu, X. Kang, N. Luo, and Q. Zhao. Parallel clustering of big data
of spatio-temporal trajectory. In ICNC, pages 769–774, 2015.

[42] C. Hung, W. Peng, and W. Lee. Clustering and aggregating clues
of trajectories for mining trajectory patterns and routes. VLDB J.,
24(2):169–192, 2015.

[43] E. H. Jacox and H. Samet. Metric space similarity joins. ACM Trans.
Database Syst., 33(2):7:1–7:38, 2008.

[44] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery
of convoys in trajectory databases. PVLDB, 1(1):1068–1080, 2008.

[45] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters
in spatio-temporal data. In SSTD, pages 364–381, 2005.

[46] M. Kornacker. High-performance extensible indexing. In VLDB, pages
699–708, 1999.

[47] D. Kumar, H. Wu, S. Rajasegarar, C. Leckie, S. Krishnaswamy, and
M. Palaniswami. Fast and scalable big data trajectory clustering for
understanding urban mobility. IEEE Trans. Intelligent Transportation
Systems, 19(11):3709–3722, 2018.

[48] P. Laube, S. Imfeld, and R. Weibel. Discovering relative motion
patterns in groups of moving point objects. IJGIS, 19(6):639–668,
2005.

[49] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-
group framework. In SIGMOD, pages 593–604, 2007.

[50] Y. Li, J. Bailey, and L. Kulik. Efficient mining of platoon patterns in
trajectory databases. Data Knowl. Eng., 100:167–187, 2015.

188



Bibliography

[51] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal
moving object clusters. PVLDB, 3(1):723–734, 2010.

[52] Z. Li, M. Ji, J. Lee, L. A. Tang, Y. Yu, J. Han, and R. Kays. Movemine:
mining moving object databases. In SIGMOD, pages 1203–1206, 2010.

[53] Z. Li, J. Lee, X. Li, and J. Han. Incremental clustering for trajectories.
In DASFAA, pages 32–46, 2010.

[54] W. Luo, H. Tan, H. Mao, and L. M. Ni. Efficient similarity joins on
massive high-dimensional datasets using mapreduce. In MDM, pages
1–10, 2012.

[55] B. Morris and M. M. Trivedi. Learning trajectory patterns by clustering:
Experimental studies and comparative evaluation. In IEEE CVPR,
pages 312–319, 2009.

[56] M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of
moving objects. J. Intell. Inf. Syst., 27(3):267–289, 2006.

[57] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos. Indexed-based
density biased sampling for clustering applications. Data Knowl. Eng.,
57(1):37–63, 2006.

[58] J. Ni and C. V. Ravishankar. Indexing spatio-temporal trajectories
with efficient polynomial approximations. IEEE Trans. Knowl. Data
Eng., 19(5):663–678, 2007.

[59] F. Orakzai, T. Calders, and T. B. Pedersen. Distributed convoy pattern
mining. In IEEE MDM, pages 122–131, 2016.

[60] F. Orakzai, T. Calders, and T. B. Pedersen. k/2-hop: Fast mining of
convoy patterns with effective pruning. PVLDB, 12(9):948–960, 2019.

[61] C. Panagiotakis, E. Kokinou, and F. Vallianatos. Automatic p-phase
picking based on local-maxima distribution. IEEE Trans. Geoscience
and Remote Sensing, 46(8):2280–2287, 2008.

[62] C. Panagiotakis, N. Pelekis, I. Kopanakis, E. Ramasso, and Y. Theodor-
idis. Segmentation and sampling of moving object trajectories based on
representativeness. IEEE Trans. Knowl. Data Eng., 24(7):1328–1343,
2012.

[63] C. Panagiotakis and G. Tziritas. A speech/music discriminator based
on RMS and zero-crossings. IEEE Trans. Multimedia, 7(1):155–166,
2005.

189



Bibliography

[64] J. M. Patel and D. J. DeWitt. Partition based spatial-merge join. In
SIGMOD, pages 259–270, 1996.

[65] N. Pelekis, G. L. Andrienko, N. V. Andrienko, I. Kopanakis, G. Mar-
ketos, and Y. Theodoridis. Visually exploring movement data via
similarity-based analysis. J. Intell. Inf. Syst., 38(2):343–391, 2012.

[66] N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. HERMES:
aggregative LBS via a trajectory DB engine. In SIGMOD, pages
1255–1258, 2008.

[67] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos, and Y. Theodor-
idis. Clustering uncertain trajectories. Knowl. Inf. Syst., 28(1):117–147,
2011.

[68] N. Pelekis, I. Kopanakis, C. Panagiotakis, and Y. Theodoridis. Unsu-
pervised trajectory sampling. In ECML PKDD, pages 17–33, 2010.

[69] N. Pelekis, P. Tampakis, M. Vodas, C. Doulkeridis, and Y. Theodoridis.
On temporal-constrained sub-trajectory cluster analysis. Data Min.
Knowl. Discov., 31(5):1294–1330, 2017.

[70] N. Pelekis, P. Tampakis, M. Vodas, C. Panagiotakis, and Y. Theodor-
idis. In-dbms sampling-based sub-trajectory clustering. In EDBT,
pages 632–643, 2017.

[71] N. Pelekis and Y. Theodoridis. Mobility Data Management and Explo-
ration. Springer, 2014.

[72] N. Pelekis and Y. Theodoridis. Mobility Data Management and Explo-
ration. Springer, 2014.

[73] P. Petrou, P. Nikitopoulos, P. Tampakis, A. Glenis, N. Koutroumanis,
G. M. Santipantakis, K. Patroumpas, A. Vlachou, H. V. Georgiou,
E. Chondrodima, C. Doulkeridis, N. Pelekis, G. L. Andrienko, F. Pat-
terson, G. Fuchs, Y. Theodoridis, and G. A. Vouros. ARGO: A big data
framework for online trajectory prediction. In SSTD, pages 194–197,
2019.

[74] P. Petrou, P. Tampakis, H. Georgiou, N. Pelekis, and Y. Theodoridis.
Online long-term trajectory prediction based on mined route patterns.
In MASTER workshop in conjuction with ECML/PKDD, 2019.

[75] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches to the
indexing of moving object trajectories. In VLDB, pages 395–406, 2000.

190



Bibliography

[76] C. Ray, R. Dreo, E. Camossi, A.-L. Jousselme, and C. Iphar. Hetero-
geneous integrated dataset for maritime intelligence, surveillance, and
reconnaissance. Data in Brief, page 104141, 2019.

[77] S. Ray, B. Simion, A. D. Brown, and R. Johnson. Skew-resistant
parallel in-memory spatial join. In SSDBM, pages 6:1–6:12, 2014.

[78] T. Seidl, S. Fries, and B. Boden. MR-DSJ: distance-based self-join
for large-scale vector data analysis with mapreduce. In DBIS, pages
37–56, 2013.

[79] K. Seki, R. Jinno, and K. Uehara. Parallel distributed trajectory
pattern mining using hierarchical grid with mapreduce. IJGHPC,
5(4):79–96, 2013.

[80] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Trajectory similarity join in spatial networks. PVLDB, 10(11):1178–
1189, 2017.

[81] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Parallel trajectory similarity joins in spatial networks. VLDB J.,
27(3):395–420, 2018.

[82] Z. Shang, G. Li, and Z. Bao. DITA: distributed in-memory trajectory
analytics. In SIGMOD, pages 725–740, 2018.

[83] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan. Clash of the titans: Mapreduce vs. spark for large scale data
analytics. PVLDB, 8(13):2110–2121, 2015.

[84] S. Shohdy, Y. Su, and G. Agrawal. Load balancing and accelerating
parallel spatial join operations using bitmap indexing. In HiPC, pages
396–405, 2015.

[85] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In MSST, pages 1–10, 2010.

[86] Y. N. Silva and J. M. Reed. Exploiting mapreduce-based similarity
joins. In SIGMOD, pages 693–696, 2012.

[87] Y. N. Silva, J. M. Reed, and L. M. Tsosie. Mapreduce-based similarity
join for metric spaces. In Cloud-I, page 3, 2012.

[88] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng. Signature-based
trajectory similarity join. IEEE Trans. Knowl. Data Eng., 29(4):870–
883, 2017.

191



Bibliography

[89] P. Tampakis, C. Doulkeridis, N. Pelekis, and Y. Theodoridis. Dis-
tributed subtrajectory join on massive datasets. ACM Trans. Spatial
Algorithms and Systems, To appear.

[90] P. Tampakis, N. Pelekis, N. V. Andrienko, G. L. Andrienko, G. Fuchs,
and Y. Theodoridis. Time-aware sub-trajectory clustering in her-
mes@postgresql. In ICDE, pages 1581–1584, 2018.

[91] P. Tampakis, N. Pelekis, C. Doulkeridis, and Y. Theodoridis. Scalable
distributed subtrajectory clustering. In IEEE International Conference
on Big Data, 2019.

[92] L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. Hung, andW. Peng.
On discovery of traveling companions from streaming trajectories. In
ICDE, pages 186–197, 2012.

[93] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access method
for timestamp and interval queries. In VLDB, pages 431–440, 2001.

[94] Y. Theodoridis, M. Vazirgiannis, and T. K. Sellis. Spatio-temporal
indexing for large multimedia applications. In ICMCS, pages 441–448,
1996.

[95] R. Trasarti, R. Guidotti, A. Monreale, and F. Giannotti. Myway:
Location prediction via mobility profiling. Inf. Syst., 64:350–367, 2017.

[96] M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of
flock patterns in spatio-temporal data. In ACM SIGSPATIAL, pages
286–295, 2009.

[97] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multi-
dimensional trajectories. In ICDE, pages 673–684, 2002.

[98] M. Vodas. Building an efficient moving object database engine. Master’s
thesis, University of Piraeus, 3 2013.

[99] F. Wu, T. K. H. Lei, Z. Li, and J. Han. Movemine 2.0: Mining object
relationships from movement data. PVLDB, 7(13):1613–1616, 2014.

[100] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory similarity
search. PVLDB, 10(11):1478–1489, 2017.

[101] H. Xu, Y. Zhou, W. Lin, and H. Zha. Unsupervised trajectory clustering
via adaptive multi-kernel-based shrinkage. In ICCV, pages 4328–4336,
2015.

192



Bibliography

[102] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang. A review of moving
object trajectory clustering algorithms. Artif. Intell. Rev., 47(1):123–
144, 2017.

[103] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In USENIX workshop n
conjuction with HotCloud, 2010.

[104] D. Zeinalipour-Yazti, S. Lin, and D. Gunopulos. Distributed spatio-
temporal similarity search. In CIKM, pages 14–23, 2006.

[105] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: parallelizing
spatial join with mapreduce on clusters. In CLUSTER, pages 1–8,
2009.

[106] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data
clustering method for very large databases. In SIGMOD, pages 103–114,
1996.

[107] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of
gathering patterns from trajectories. In ICDE, pages 242–253, 2013.

[108] K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, and X. Zhou. Online
discovery of gathering patterns over trajectories. IEEE Trans. Knowl.
Data Eng., 26(8):1974–1988, 2014.

[109] Y. Zheng. Trajectory data mining: An overview. ACM TIST, 6(3):29:1–
29:41, 2015.

[110] Y. Zheng, X. Xie, and W. Ma. Geolife: A collaborative social network-
ing service among user, location and trajectory. IEEE Data Eng. Bull.,
33(2):32–39, 2010.

[111] E. Zimányi, M. A. Sakr, A. Lesuisse, and M. S. Bakli. Mobilitydb: A
mainstream moving object database system. In SSTD, pages 206–209,
2019.

[112] N. Zygouras and D. Gunopulos. Corridor learning using individual
trajectories. In MDM, pages 155–160, 2018.

193


	Abstract (English/)
	Contents
	List of Figures
	List of Tables
	I Setting the Scene
	Introduction
	Motivation
	Application Scenarios
	Challenges
	Contributions
	Datasets
	Synthetic Datasets
	Real Datasets

	Thesis Organization

	Background
	Fundamentals
	About Mobility Data
	Modeling Mobility Data

	Mobility Data Management
	Querying Mobility Data
	Indexing Mobility Data
	In-DBMS Mobility Data Management

	Joining Trajectories
	Distance Join
	k-nn Join
	Similarity Join
	Spatial & Multidimensional Joins

	Mining Mobility Data
	Co-movement Pattern Discovery
	Trajectory Clustering
	Sequential Pattern Discovery
	Data-driven predictive analytics



	II In-DBMS Centralized Algorithms and Techniques
	In-DBMS Sampling-based Subtrajectory Clustering
	Introduction
	Problem Formulation
	The S2T-Clustering Algorithm
	NaTS: Neighborhood-aware Trajectory Segmentation
	SaCO: Sampling, Clustering, and Outlier detection

	S2T-Clustering In-DBMS
	NaTS in-DBMS
	SaCO in-DBMS

	Experimental Study
	Datasets
	Quality of Clustering Analysis
	Efficiency and Scalability

	Summary

	Temporal-constrained Subtrajectory Cluster Analysis
	Introduction
	Problem Setting
	The ReTraTree Indexing Scheme
	ReTraTree Overview
	Hierarchical Temporal Partitioning
	Sampling-based Subtrajectory Clustering
	ReTraTree Maintenance

	ReTraTree in Action
	QuT-Clustering
	Architectural Aspects
	Complexity Analysis

	Experimental Study
	Parameter Settings
	Baseline Solution
	Datasets
	Quality of Clustering Analysis in Synthetic Datasets Including Ground Truth
	Sensitivity Analysis with Respect to Various Parameters
	Quality of Clustering Analysis in Real Datasets
	ReTraTree Maintenance
	I/O Performance
	Efficiency of QuT-clustering versus S2T-Clustering

	Summary

	Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL
	Introduction
	Major Modules and System Architecture
	S2T-Clustering
	QuT-Clustering
	System Architecture

	Demonstration of Results
	Summary


	III Distributed Algorithms and Techniques
	Distributed Subtrajectory Join on Massive Datasets
	Introduction
	Problem Statement
	A Closer Look at the Subtrajectory Join Problem
	Properties of Subtrajectory Join
	Distributed Subtrajectory Join

	The Basic Subtrajectory Join Algorithm
	Preliminaries
	The DTJb Algorithm

	Subtrajectory Join with Repartitioning
	Repartitioning
	The DTJr Algorithm

	Index-based Subtrajectory Join with Repartitioning
	Indexing Scheme
	The DTJi Algorithm

	Experimental Study
	Scalability
	Repartitioning and Load Balancing
	Comparative Evaluation
	Sensitivity Analysis
	Indexing

	Summary

	Scalable Distributed Subtrajectory Clustering
	Introduction
	Problem Formulation
	Similarity between (sub)trajectories
	A Closer Look to the Subtrajectory Clustering Problem
	Distributed Subtrajectory Clustering

	Problem Solution
	Overview
	Distributed Subtrajectory Join
	Distributed Trajectory Segmentation
	Distributed Clustering

	Complexity Analysis
	Experimental Study
	Parameter Setting
	Comparison with related work
	Performance and Scalability
	Sensitivity Analysis

	Summary


	IV Outlook
	Conclusions
	Ideas for Future Work

	Bibliographical References

