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Motivation
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12K distinct ships/day, 200M AIS 

contacts/month in EU waters

MOD

SQL
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• The “explosion” of mobility data generation has 

posed new challenges in the data management 

community, in terms of storage, querying, 

analytics and knowledge extraction.

• During the past two decades, the field of Moving 

Object Databases (MODs) has emerged for the 

efficient management (storage, querying and 

indexing) of such data.

• However, knowledge discovery techniques, such 

as cluster analysis, are not treated as an integral 

part of MODs.

• Bridge the gap between MOD management 

and mobility data mining → efficiency and 

ease of use.
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Motivation
• Trajectory clustering is an important 

operation of knowledge discovery from 

mobility data.

• The research so far has focused mainly in 

methods that aim to identify specific collective 

behavior patterns among moving objects.

• However, this kind of approaches operate at 

specific predefined temporal “snapshots” of the 

dataset, thus ignoring the route of each moving 

object between these sampled points.

• Another line of research tries to identify 

patterns that are valid for the entire lifespan of 

the moving objects.

• However, discovering clusters of complete 

trajectories can overlook significant patterns that 

might exist only for some portions of their lifespan.
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• In this thesis, we focus in Subtrajectory Clustering analysis.

• Six Trajectories

• A → B

• A → C

• A → D

• The Goal:

• 4 Clusters

• A → O (red)

• B → O (blue)

• O → C (purple)

• O → D (orange) 

• and 2 outliers 

• O → A

• O → B (black))

7

• B → A

• B → C

• B → D

Motivation



Motivation
• What is even more challenging, is 

how one can support incremental 

and progressive cluster analysis in 

the context of dynamic applications, 

where 

• new trajectories arrive at frequent rates, 

and 

• the analysis is performed over different 

portions of the dataset, and this might be 

repeated several times per analysis 

task.
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Motivation
• Performing advanced knowledge 

discovery operations, over immense 

volumes of data in a centralized way 

is far from straightforward.

• The bottleneck → spatiotemporal 

similarity join query

→ Parallel and Distributed algorithms →

Scalability + Efficiency.

• Joining trajectory datasets is a 

significant operation with a wide 

range of applications.
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Application Scenarios
• Trajectory Join

• Carpooling; Suspicious 

Movement Detection; 

Trajectory segmentation; 

etc.

• Subtrajectory Clustering

• Network Discovery; 

Predictive Analytics; etc.

• Interactive Mobility Data 

Exploration and Analysis

• Urban Planning; Traffic 

Analysis; etc.
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Challenges
• The problem of subtrajectory clustering is NP-Hard.

• The objects to be clustered are not known beforehand but have to be identified 

through a trajectory segmentation procedure.

• Implementing efficiently such an algorithm “inside” an extensible DBMS is 

also a challenging task, since its peculiarities need to be taken into 

account.

• Parallel and Distributed processing.

• Ηow to partition the data in such a way so that each node can perform its 

computation independently.

• How to achieve load balancing.

• How to minimize the iterations of data processing.
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Contributions
• In-DBMS Centralized Algorithms and Techniques (Part II)

• In-DBMS Sampling-based SubTrajectory Clustering (S2T-Clustering) (Chapter 3)

• Temporal-constrained Subtrajectory Cluster Analysis (Chapter 4)

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL (Chapter 5)

• Distributed Algorithms and Techniques (Part III)

• Distributed Subtrajectory Join on Massive Datasets (Chapter 6)

• Scalable Distributed Subtrajectory Clustering (Chapter 7)
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Datasets
• Synthetic

• SMOD - Synthetic MOD (SMOD) 

• Intersection
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Datasets
• Real
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Part II
In-DBMS Centralized Algorithms 

and Techniques
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In-DBMS Sampling-based Subtrajectory Clustering

Introduction

19

𝑶𝟏

T
2

T
3T

4

T
1

𝑶𝟐

𝑪𝟏

𝑪𝟐

T
2

T
3T

4

T
1



In-DBMS Sampling-based Subtrajectory Clustering

Problem Formulation

• Assuming a cluster is represented by its 

representative (or medoid) subtrajectory, we 

define clustering as an optimization:

• Maximizing SRD is not trivial since one has to 

define, among others, 

i. the criterion according to which a trajectory is 

segmented into subtrajectories, 

ii. the technique for selecting the set of the most 

representative subtrajectories,

iii. whose cardinality M
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The S2T-Clustering Algorithm

In-DBMS Sampling-based Subtrajectory Clustering
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In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - NaTS - Voting
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In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - NaTS - Segmentation
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In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - SaCO - Sampling
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In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - SaCO - Clustering and 

Outlier detection
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In-DBMS Sampling-based Subtrajectory Clustering

S2T-Clustering in-DBMS

• It is obvious that the most demanding part of the whole 

procedure is the Voting step. 

• Baseline solutions:

• Baseline I: Segment based range query over 3D-R-Tree.

• One lookup per segment → More disk I/O, better filtering.

• Baseline II: Trajectory based range query over 3D-R-Tree.

• One lookup per trajectory → Less disk I/O, worse filtering.

• For this reason we implemented the Trajectory Buffer Query 

(TBQ) by utilizing the GIST interface.

• Trajectory Buffer: TB(T, εsp, εt) → a 3D ‘buffer’ around T such that 

every point in TB(T, εsp, εt) is at most εsp and εt (in space and time, 

resp.) far from a point in T.
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In-DBMS Sampling-based Subtrajectory Clustering

S2T-Clustering in-DBMS - NaTS in-DBMS 

Trajectory Buffer Query - TBQ Given a set S of trajectories, a reference trajectory T, a spatial 

threshold εsp and a temporal threshold εt, the trajectory buffer query TBQ(S, T, εsp, εt) retrieves 

those segments in S that overlap with TB(T, εsp, εt). → By implementing GiSTs Consistent() 

method.

27
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In-DBMS Sampling-based Subtrajectory Clustering

Experimental Study – Datasets
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In-DBMS Sampling-based Subtrajectory Clustering

Experimental Study

• S2T-Clustering vs TraClus

29

S2T-Clustering
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In-DBMS Sampling-based Subtrajectory Clustering

Experimental Study - Efficiency and Scalability
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In-DBMS Sampling-based Subtrajectory Clustering

Summary

• We address the problem of subtrajectory clustering more effectively than the 

state-of-the-art (namely, TraClus).

• Our proposal is designed in-DBMS, 

• i.e., it performs as a query operator in a real MOD engine over an extensible DBMS.

• Our algorithm is boosted by an efficient index-based Trajectory Buffer Query 

(TBQ) that speeds up the overall process, 

• thus resulting in a scalable solution, outperforming the state-of-the-art in-DBMS solutions 

supported by PostGIS by several orders of magnitude.
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Temporal-constrained Subtrajectory Cluster Analysis

33

• In several operational applications, new 

data arrive at frequent rates.

• In real life scenarios, an analyst needs to 

run the clustering procedure several times 

and at different portions of a dataset.

• In this setting, the approach followed so far 

is not that efficient.

• We need a solution that will be able to 

support efficiently incremental and 

progressive cluster analysis.

Introduction



Temporal-constrained Subtrajectory Cluster Analysis

34

The ReTraTree Indexing Scheme - Overview

• 1st level - Chunking

• 2nd level - Subchunking

• 3rd level - S2T Clustering 

• 4th level - Raw Data
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Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - Hierarchical Temporal 

Partitioning

• 1st level - Chunking
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Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - Hierarchical Temporal 

Partitioning

• 2nd level - Subchunking

Subchunk
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Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - Sampling-based 

Subtrajectory Clustering

• 3rd level - S2T Clustering 
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Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme – Raw Data

• 4th level - Raw Data
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Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…
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• Adding Trajectory Tk into the ReTraTree
Structure.



Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1
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T1 CR1

T2 CR1

T3 CR1

T4 CR2
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O1
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3D-Rtree

• 1st level Chunking
• Hard partitioning in the time dimension.



Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

• 2nd level Subchunking

• Data-driven partitioning in time dimension

• Assigns each sub-trajectory to an appropriate sub-
chunk



Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

3D-Rtree

3D-Rtree

SnewCKi

• •

• 2nd level Subchunking

• If there is not a matching sub-chunk w.r.t. time, 

• a new subchunk is created, 

• which is initialized with an empty representative set S, 

• and an outliers set O including the unmatched sub-
trajectory



Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1
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T1 CR1

T2 CR1

T3 CR1

T4 CR1

T5 CR1
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or ?

• 3rd level S2T-Clustering 
• If there is an appropriate sub-chunk for the sub-

trajectory under processing, the algorithm tries to assign 
it to an existing cluster.



Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance
• 3rd level S2T-Clustering 

• If this attempt fails then the algorithm adds the sub-
trajectory into the outliers’ set, which act as a 
temporary relation.
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Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •
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T1 CR1
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If  O > a Mb 

then apply  

S
2
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• 3rd level S2T-Clustering 
• If the size of the relation outliers exists a user-defined 

threshold set, then sampling-based sub-trajectory 
clustering is applied.



Temporal-constrained Subtrajectory Cluster Analysis
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi
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• 3rd level S2T-Clustering 
• Let us assume that outliers O2 and O3 form a cluster 

and O1 continues to be an outlier.
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The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
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S1CK1 S2CKi
…
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• 3rd level S2T-Clustering 
• For each of the resulting new outlier sub-trajectories 

we re-insert the sub-trajectory from the top of the 
ReTraTree structure.



Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

• Input: a temporal period.

• Output: all maximal (w.r.t. time dimension) 
clusters during the given period of time.
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Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

1. Filter the chunks that overlap the given period 
and for each of them filter the corresponding 
valid sub-chunks. CK1 CK2

… CKi
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…

• • • • • •
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Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

1. Filter the chunks that overlap the given period 
and for each of them filter the corresponding 
valid sub-chunks. CK1 CK2

… CKi
… CKp

S1CK1 S2CK1
…

• • • • • •
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Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

t
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2. The representatives discovered in each sub-
chunk are 
• organized in a priority queue and

• partitioned in equivalence classes.

• Each equivalence class contains representatives from 
multiple sub-chunks (in figure, continuous or dotted 
lines).
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ReTraTree in Action - QuT-Clustering

3. For each equivalence class, sweep through the time dimension
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Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

4. Merge similar subtrajectories from different subchunks
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Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

5. Append subtrajectories in order to get maximal patterns

t

x

R2

R1

> tau

sweep line

R3
R4

R5

R6

R7



Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

6. In any other case the algorithm does nothing, (continues to the next pair).
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Temporal-constrained Subtrajectory Cluster Analysis
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ReTraTree in Action - QuT-Clustering

7. The output representatives are:
• the merged representatives,

• the appended representatives and the

• rest of the representatives.
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Temporal-constrained Subtrajectory Cluster Analysis
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Experimental Study – Datasets



Temporal-constrained Subtrajectory Cluster Analysis
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Experimental Study – Quality of Clustering Analysis



Temporal-constrained Subtrajectory Cluster Analysis
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Experimental Study – ReTraTree Maintenance



Temporal-constrained Subtrajectory Cluster Analysis
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Experimental Study – Efficiency of QuT-clustering vs. S2T-

Clustering

# of Queries



Temporal-constrained Subtrajectory Cluster Analysis
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Summary

• We proposed ReTraTree, an indexing scheme which organizes trajectories by 

using an effective spatio-temporal partitioning technique.

• We devised QuT-Clustering, a query operator on top of ReTraTree, to solve 

the problem of temporal-constrained subtrajectory clustering.

• Our approach outperforms S2T-Clustering, the state-of-the-art in-DBMS 

solution supported by PostgreSQL, by several orders of magnitude without 

compromising the quality of the results.
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Time-Aware Subtrajectory Clustering in 
Hermes@PostgreSQL

63

Introduction

• The goal:

• Interactive mobility data exploration and analysis and more specifically, progressive 

time-aware sub-trajectory cluster analysis.

• Desired specifications

• Efficiency; Ease of use (via an SQL interface); Interactive Visual Analytics support

• Our proposal

• Implement two state of the art efficient and scalable solutions for subtrajectory

clustering [12][13] that are incorporated in Hermes@PostgreSQL [14], a MOD which is 

built on top of a real-world DBMS.

• Integrate with a Visual Analytics tool (V-Analytics) to facilitate real world interactive 

analysis.



Major Modules and System Architecture

• V-Analytics

• QuT-Clustering

• ReTraTree

• S2T-Clustering

Time-Aware Subtrajectory Clustering in 
Hermes@PostgreSQL

64
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Demonstration of Results

Run 1: Small Sub-

Trajectories

Run 2: Large Sub-

Trajectories

Discovery of holding patterns performed by 

aircrafts

Comparison of 2 runs 

of S2T-Clustering
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Demonstration of Results

• Exploration of results of 5 runs 

of QuT-Clustering.

• Each run has an increasing 

temporal predicate 

• W: 800-1000, 600-1000, 400-

1000, 200-1000, 0-1000

• We ask for patterns that are 

valid during the specified 

period.

• The time is specified in relative 

units from 0 to 1000.

Representatives
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Summary

• We presented an efficient in-DBMS framework that facilitates progressive 

time-aware subtrajectory cluster analysis. 

• spatiotemporal subtrajectory clustering

• on demand index-based time-aware clustering

• The framework is also extended with a VA tool to facilitate real world analysis.
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Problem Formulation

• Given two sets of trajectories, retrieve 

… all pairs of maximal subtrajectories

… that move “close enough” in time and space 

… for at least some time duration.
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Problem Formulation

• Example

object id=2036632681
The Join returned 5 trajectories 

that moved “together” for at least 

5 minutes

The “common” movement 

of these trajectories
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Problem Formulation

• Given two sets of trajectories, retrieve 

• all pairs of maximally “matching” subtrajectories.
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Problem Formulation

• In fact, the set of Joining points is the outcome of 

inner join R⨝S, where the evaluated join predicates 

are εsp and εt. 

• However, these pairs of points do not suffice to 

return the correct query result.



Problem Formulation

• Why Joining points are not enough?
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Case 1 Case 2
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Problem Formulation

• A naïve algorithm would require the Cartesian 

product R × S to produce the correct result. 

• We claim that R × S can be represented by two sets 

of pairs of points, the set of 

• Joining points (JP) and 

• the set of non-joining points (NJP).

• Formally, R × S = JP U NJP.

• Obviously, trying to deal with our problem by utilizing 

the Cartesian product is unrealistic.
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Problem Formulation
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The Basic Subtrajectory Join Algorithm (DTJb)
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The Basic Subtrajectory Join Algorithm 

(DTJb) – Partitioning

• M disjoint temporal partitions, 

→ cannot guarantee the correctness due to εt.

• We expand each partition by εt, so that it can be 

processed independently in parallel.

• Duplication avoidance

t

y

t0 t1 t2 t3 t4

εtεt
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The Basic Subtrajectory Join Algorithm (DTJb) – Join
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The Basic Subtrajectory Join Algorithm (DTJb) – Refine
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The Basic Subtrajectory Join Algorithm (DTJb) – Refine
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Subtrajectory Join with Repartitioning (DTJr)
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• We sample the input data (InputSampler) and

construct an equi-depth histogram on the

temporal dimension.

• The histogram contains M equi-sized bins.

t

y

t0 t1 t2 t3 t4

Subtrajectory Join with Repartitioning (DTJr) – Repartitioning
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• In order to minimize the I/O cost, 

• Join procedure in the Map phase, and the 

• Refine in the Reduce phase.

• Each HDFS block is expanded with additional points 

that exist at time (+/-) εt, and this is the process of 

InputSplits creation. 

• Duplication avoidance.

t

y

t0 t1 t2 t3 t4

εtεt

Split

Subtrajectory Join with Repartitioning (DTJr) – Repartitioning
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Index-based Subtrajectory Join with Repartitioning (DTJi)

• Spatial Index (SpI)

• QuadTrees

• Trajectory Index (TrI)

• HashMap

• Key → trajectory ID

• Value → list of positions 
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Index-based Subtrajectory Join with Repartitioning (DTJi)
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Experimental Study

• Setting

• 49 node Hadoop 2.7.2 cluster (1 Master + 

48 Slaves).

• Each slave → 4 CPU cores, 4 GB of RAM 

and 60 GB of HDD.

• 192 containers.

• Dataset → IMIS

• 699,031 trajectories of ships moving in the 

Eastern Mediterranean 

• for a period of 3 years. 

• This dataset contains approximately 1.5 

billion records, 56GB in total size.
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Experimental Study - Scalability
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Experimental Study – Repartitioning and Load Balancing
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Experimental Study – Comparative Evaluation
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Summary

• We introduced the Distributed Subtrajectory Join query.

• We addressed it in a scalable manner following the MapReduce 

programming model.

• The results show that our index-based solution performs up to 16x faster 

compared with our baseline and 3x faster than the closest related state of the 

art algorithm.
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Problem Formulation

• The problem of Subtrajectory Clustering can 

be decomposed to

1. Subtrajectory Join → Computation of LCSS

2. Trajectory Segmentation

3. Subtrajectory Clustering

• Assuming a cluster is represented by its 

representative (or medoid) subtrajectory, we 

define clustering as an optimization problem:

• Distributed Subtrajectory Clustering → Solve 

Problems 1, 2 and 3 (in this order) in a 

parallel/distributed way.

Scalable Distributed Subtrajectory Clustering
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Problem Solution – Overview

DTJi



• TSA1→ identifies the beginning of a new 
subtrajectory whenever the density (V(ri)) of its 
neighborhood changes significantly.

• TSA2 → identifies the beginning of a new 
subtrajectory whenever the composition of its 
neighborhood changes substantially.
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Problem Solution – Distributed Trajectory Segmentation
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Problem Solution – Distributed Clustering



Problem Solution – Refinement of Results

• For each partition, the clustering procedure will decide 

whether a subtrajectory is 

• a Representative (R), 

• a Cluster Member (C) or 

• an Outlier (O).

• For each intersecting subtrajectory q and for each pair 

of consecutive partitions (i, j) with which q intersects, q 

can have the following pairs of states: 

• (a) O-O, 

• (b) R-R, 

• (c) C-C, 

Scalable Distributed Subtrajectory Clustering
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• (d) R-C (C-R), 

• (e) R-O (O-R) and 

• (f) C-O (O-C)



Experimental Study – Datasets

• Intersection

• Brest

• SIS

Scalable Distributed Subtrajectory Clustering
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Experimental Study – Comparison with Related Work

• DSC vs S2T-Clustering vs TraCluS.

Scalable Distributed Subtrajectory Clustering
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Experimental Study – Performance and Scalability
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Summary

• We addressed the problem of Distributed Subtrajectory Clustering by 

building upon a scalable subtrajectory join query operator.

• We proposed two alternative trajectory segmentation algorithms.

• We proposed a distributed clustering algorithm where the clusters are 

identified in a parallel manner and get refined as a final step.

• Our experimental study shows that our solution is more effective and far more 

scalable (since it is distributed) from the state of the art.
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Conclusions

The Thesis’ contributions, in a nutshell:

• Centralized environment:

• S2T-Clustering, an efficient subtrajectory clustering algorithm

• ReTraTree, an indexing scheme assisting temporal-constrained subtrajectory cluster 

analysis

• QuT-Clustering, an in-DBMS query operator over ReTraTree

• Distributed (Big Data) environment:

• algorithms addressing the Distributed Subtrajectory Join (DTJ) query, following the 

MapReduce programming model 

• algorithms addressing the Distributed Subtrajectory Clustering problem, by building 

upon DTJ
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Ideas for Future Work

• Concerning the problem of temporally-constrained subtrajectory cluster 

analysis:

• investigate real-time solutions, on big data architectures.

• Regarding the Distributed Subtrajectory Join operator: 

• investigate how the solution provided can be applicable to streaming trajectories

• examine how this query can be extended and utilized in order to be able to identify 

efficiently various mobility patterns (e.g., flocks, convoys, moving clusters swarms etc.)

• investigate the potential of extending the solution proposed here to tackle the problem of 

k-nn trajectory join.

• Concerning the problem of Distributed Subtrajectory Clustering: 

• extend our solution with properties of density-based clustering algorithms

• investigate the possibility of addressing the same problem in a streaming environment, 

since our algorithm employs a single pass over the data.
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