
Big Mobility Data Analytics:

Algorithms and Techniques for Efficient

Trajectory Clustering

Piraeus, 20 November 2019

A thesis submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Panagiotis Tampakis

Department of Informatics

School of Information and Communication Technologies

University of Piraeus

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

2

Part I
Setting the Scene

3

Big Mobility Data Analytics:
Algorithms and Techniques for Efficient

Trajectory Clustering

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

4

Motivation

5

12K distinct ships/day, 200M AIS

contacts/month in EU waters

MOD

SQL

Programming

Language

MOD

SQL

• The “explosion” of mobility data generation has

posed new challenges in the data management

community, in terms of storage, querying,

analytics and knowledge extraction.

• During the past two decades, the field of Moving

Object Databases (MODs) has emerged for the

efficient management (storage, querying and

indexing) of such data.

• However, knowledge discovery techniques, such

as cluster analysis, are not treated as an integral

part of MODs.

• Bridge the gap between MOD management

and mobility data mining → efficiency and

ease of use.

t1 t2

1

1

2

3

4

5 6

<e

t

C1

C2

23

4

5

6

2

3

4

5
6

1

C3

t3

Flocks Convoys

Moving Clusters Swarms

Motivation
• Trajectory clustering is an important

operation of knowledge discovery from

mobility data.

• The research so far has focused mainly in

methods that aim to identify specific collective

behavior patterns among moving objects.

• However, this kind of approaches operate at

specific predefined temporal “snapshots” of the

dataset, thus ignoring the route of each moving

object between these sampled points.

• Another line of research tries to identify

patterns that are valid for the entire lifespan of

the moving objects.

• However, discovering clusters of complete

trajectories can overlook significant patterns that

might exist only for some portions of their lifespan.

6

T-OPTICS

• In this thesis, we focus in Subtrajectory Clustering analysis.

• Six Trajectories

• A → B

• A → C

• A → D

• The Goal:

• 4 Clusters

• A → O (red)

• B → O (blue)

• O → C (purple)

• O → D (orange)

• and 2 outliers

• O → A

• O → B (black))

7

• B → A

• B → C

• B → D

Motivation

Motivation
• What is even more challenging, is

how one can support incremental

and progressive cluster analysis in

the context of dynamic applications,

where

• new trajectories arrive at frequent rates,

and

• the analysis is performed over different

portions of the dataset, and this might be

repeated several times per analysis

task.

8

Motivation
• Performing advanced knowledge

discovery operations, over immense

volumes of data in a centralized way

is far from straightforward.

• The bottleneck → spatiotemporal

similarity join query

→ Parallel and Distributed algorithms →

Scalability + Efficiency.

• Joining trajectory datasets is a

significant operation with a wide

range of applications.

9

Application Scenarios
• Trajectory Join

• Carpooling; Suspicious

Movement Detection;

Trajectory segmentation;

etc.

• Subtrajectory Clustering

• Network Discovery;

Predictive Analytics; etc.

• Interactive Mobility Data

Exploration and Analysis

• Urban Planning; Traffic

Analysis; etc.

10

Voting

Segmentation
Sampling

Greedy

Clustering

S2T-Clustering

Parti tion-1 .. .

new data old data

W

disk

memory

Partition-N

ReTraTree

clusters

Q
u

T
-C

lu
sterin

g

ReTraTree-Insert

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

11

Challenges
• The problem of subtrajectory clustering is NP-Hard.

• The objects to be clustered are not known beforehand but have to be identified

through a trajectory segmentation procedure.

• Implementing efficiently such an algorithm “inside” an extensible DBMS is

also a challenging task, since its peculiarities need to be taken into

account.

• Parallel and Distributed processing.

• Ηow to partition the data in such a way so that each node can perform its

computation independently.

• How to achieve load balancing.

• How to minimize the iterations of data processing.

12

Contributions
• In-DBMS Centralized Algorithms and Techniques (Part II)

• In-DBMS Sampling-based SubTrajectory Clustering (S2T-Clustering) (Chapter 3)

• Temporal-constrained Subtrajectory Cluster Analysis (Chapter 4)

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL (Chapter 5)

• Distributed Algorithms and Techniques (Part III)

• Distributed Subtrajectory Join on Massive Datasets (Chapter 6)

• Scalable Distributed Subtrajectory Clustering (Chapter 7)

13

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

14

Datasets
• Synthetic

• SMOD - Synthetic MOD (SMOD)

• Intersection

15

Datasets
• Real

16

a
v
ia

ti
o
n

m
a
ri
ti
m

e
u
rb

a
n

Part II
In-DBMS Centralized Algorithms

and Techniques

17

Big Mobility Data Analytics:
Algorithms and Techniques for Efficient

Trajectory Clustering

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

18

In-DBMS Sampling-based Subtrajectory Clustering

Introduction

19

𝑶𝟏

T
2

T
3T

4

T
1

𝑶𝟐

𝑪𝟏

𝑪𝟐

T
2

T
3T

4

T
1

In-DBMS Sampling-based Subtrajectory Clustering

Problem Formulation

• Assuming a cluster is represented by its

representative (or medoid) subtrajectory, we

define clustering as an optimization:

• Maximizing SRD is not trivial since one has to

define, among others,

i. the criterion according to which a trajectory is

segmented into subtrajectories,

ii. the technique for selecting the set of the most

representative subtrajectories,

iii. whose cardinality M

20

O

C1
C2

O

O

O

O

The S2T-Clustering Algorithm

In-DBMS Sampling-based Subtrajectory Clustering

21

Input
(MOD)

Voting

Segmentation

Sampling

Clustering
& Outlier

Detection

Output
(CLUSTERS OF

SUBTRAJECTORIES

& OUTLIERS)

NaTS

SaCO

In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - NaTS - Voting

22

T2

T3T4

T1

T4

T3

T1
T2

In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - NaTS - Segmentation

23

T2

T3T4

T1

T4

T3

T1
T2

In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - SaCO - Sampling

24

R1
R2

T
2

T
3T

4

T
1

In-DBMS Sampling-based Subtrajectory Clustering

The S2T-Clustering Algorithm - SaCO - Clustering and

Outlier detection

25

R1 R2

T2

T3T4

T1 O

C1
C2

O

O

O

O

T

εsp

In-DBMS Sampling-based Subtrajectory Clustering

S2T-Clustering in-DBMS

• It is obvious that the most demanding part of the whole

procedure is the Voting step.

• Baseline solutions:

• Baseline I: Segment based range query over 3D-R-Tree.

• One lookup per segment → More disk I/O, better filtering.

• Baseline II: Trajectory based range query over 3D-R-Tree.

• One lookup per trajectory → Less disk I/O, worse filtering.

• For this reason we implemented the Trajectory Buffer Query

(TBQ) by utilizing the GIST interface.

• Trajectory Buffer: TB(T, εsp, εt) → a 3D ‘buffer’ around T such that

every point in TB(T, εsp, εt) is at most εsp and εt (in space and time,

resp.) far from a point in T.

26

In-DBMS Sampling-based Subtrajectory Clustering

S2T-Clustering in-DBMS - NaTS in-DBMS

Trajectory Buffer Query - TBQ Given a set S of trajectories, a reference trajectory T, a spatial

threshold εsp and a temporal threshold εt, the trajectory buffer query TBQ(S, T, εsp, εt) retrieves

those segments in S that overlap with TB(T, εsp, εt). → By implementing GiSTs Consistent()

method.

27

1 lookup per sequence

In-DBMS Sampling-based Subtrajectory Clustering

Experimental Study – Datasets

28

In-DBMS Sampling-based Subtrajectory Clustering

Experimental Study

• S2T-Clustering vs TraClus

29

S2T-Clustering

TraClus

In-DBMS Sampling-based Subtrajectory Clustering

Experimental Study - Efficiency and Scalability

30

In-DBMS Sampling-based Subtrajectory Clustering

Summary

• We address the problem of subtrajectory clustering more effectively than the

state-of-the-art (namely, TraClus).

• Our proposal is designed in-DBMS,

• i.e., it performs as a query operator in a real MOD engine over an extensible DBMS.

• Our algorithm is boosted by an efficient index-based Trajectory Buffer Query

(TBQ) that speeds up the overall process,

• thus resulting in a scalable solution, outperforming the state-of-the-art in-DBMS solutions

supported by PostGIS by several orders of magnitude.

31

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

32

Temporal-constrained Subtrajectory Cluster Analysis

33

• In several operational applications, new

data arrive at frequent rates.

• In real life scenarios, an analyst needs to

run the clustering procedure several times

and at different portions of a dataset.

• In this setting, the approach followed so far

is not that efficient.

• We need a solution that will be able to

support efficiently incremental and

progressive cluster analysis.

Introduction

Temporal-constrained Subtrajectory Cluster Analysis

34

The ReTraTree Indexing Scheme - Overview

• 1st level - Chunking

• 2nd level - Subchunking

• 3rd level - S2T Clustering

• 4th level - Raw Data

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal-constrained Subtrajectory Cluster Analysis

35

The ReTraTree Indexing Scheme - Hierarchical Temporal

Partitioning

• 1st level - Chunking

y

t

x

T2

Day 1

T5
T3T4

T1

Day 2

T6

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal-constrained Subtrajectory Cluster Analysis

36

The ReTraTree Indexing Scheme - Hierarchical Temporal

Partitioning

• 2nd level - Subchunking

Subchunk

1

y

t

x

T2

Day 1

T5
T3

T4

T1
T6

Subchunk

2

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal-constrained Subtrajectory Cluster Analysis

37

The ReTraTree Indexing Scheme - Sampling-based

Subtrajectory Clustering

• 3rd level - S2T Clustering

y

x

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal-constrained Subtrajectory Cluster Analysis

38

The ReTraTree Indexing Scheme – Raw Data

• 4th level - Raw Data

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

3D-Rtree

O1

O2

3D-Rtree

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal-constrained Subtrajectory Cluster Analysis

39

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR2

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

• Adding Trajectory Tk into the ReTraTree
Structure.

Temporal-constrained Subtrajectory Cluster Analysis

40

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

• 1st level Chunking
• Hard partitioning in the time dimension.

Temporal-constrained Subtrajectory Cluster Analysis

41

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

• 2nd level Subchunking

• Data-driven partitioning in time dimension

• Assigns each sub-trajectory to an appropriate sub-
chunk

Temporal-constrained Subtrajectory Cluster Analysis

42

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

3D-Rtree

3D-Rtree

SnewCKi

• •

• 2nd level Subchunking

• If there is not a matching sub-chunk w.r.t. time,

• a new subchunk is created,

• which is initialized with an empty representative set S,

• and an outliers set O including the unmatched sub-
trajectory

Temporal-constrained Subtrajectory Cluster Analysis

43

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR1

T5 CR1

O1

O2

3D-Rtree

3D-Rtree

or ?

• 3rd level S2T-Clustering
• If there is an appropriate sub-chunk for the sub-

trajectory under processing, the algorithm tries to assign
it to an existing cluster.

Temporal-constrained Subtrajectory Cluster Analysis

44

The ReTraTree Indexing Scheme - ReTraTree Maintenance
• 3rd level S2T-Clustering

• If this attempt fails then the algorithm adds the sub-
trajectory into the outliers’ set, which act as a
temporary relation.

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Not?

O3

CR2

Temporal-constrained Subtrajectory Cluster Analysis

45

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Not?

O3

If O > a Mb

then apply

S
2

T-Clustering

• 3rd level S2T-Clustering
• If the size of the relation outliers exists a user-defined

threshold set, then sampling-based sub-trajectory
clustering is applied.

Temporal-constrained Subtrajectory Cluster Analysis

46

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

3D-Rtree

3D-Rtree

CR3

CR3

CR3

T6

T7

• 3rd level S2T-Clustering
• Let us assume that outliers O2 and O3 form a cluster

and O1 continues to be an outlier.

Temporal-constrained Subtrajectory Cluster Analysis

47

The ReTraTree Indexing Scheme - ReTraTree Maintenance

CK1 CK2
… CKi

… CKp

S1CK1 S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

3D-Rtree

3D-Rtree

CR3

CR3

CR3

T6

T7

• 3rd level S2T-Clustering
• For each of the resulting new outlier sub-trajectories

we re-insert the sub-trajectory from the top of the
ReTraTree structure.

Temporal-constrained Subtrajectory Cluster Analysis

48

ReTraTree in Action - QuT-Clustering

• Input: a temporal period.

• Output: all maximal (w.r.t. time dimension)
clusters during the given period of time.

CK1 CK2
… CKi

… CKp

S1CKi S2CKi
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal

Period
ti te

Temporal-constrained Subtrajectory Cluster Analysis

49

ReTraTree in Action - QuT-Clustering

1. Filter the chunks that overlap the given period
and for each of them filter the corresponding
valid sub-chunks. CK1 CK2

… CKi
… CKp

S1CK1 S2CK1
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal

Period
ti te

Temporal-constrained Subtrajectory Cluster Analysis

50

ReTraTree in Action - QuT-Clustering

1. Filter the chunks that overlap the given period
and for each of them filter the corresponding
valid sub-chunks. CK1 CK2

… CKi
… CKp

S1CK1 S2CK1
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal

Period
ti te

Temporal-constrained Subtrajectory Cluster Analysis

51

ReTraTree in Action - QuT-Clustering

t

x

R2

R1

> tau

sweep line

R3
R4

R5

R6

R7

CK1 CK2
… CKi

… CKp

S1CK1 S2CK1
…

• • • • • •

CR1

CR2

T1 CR1

T2 CR1

T3 CR1

T4 CR2

T5 CR2

O1

O2

3D-Rtree

3D-Rtree

Temporal

Period
ti te

2. The representatives discovered in each sub-
chunk are
• organized in a priority queue and

• partitioned in equivalence classes.

• Each equivalence class contains representatives from
multiple sub-chunks (in figure, continuous or dotted
lines).

Temporal-constrained Subtrajectory Cluster Analysis

52

ReTraTree in Action - QuT-Clustering

3. For each equivalence class, sweep through the time dimension

t

x

R2

R1

> tau

sweep line

R3

R4

R5

R6

R7

Temporal-constrained Subtrajectory Cluster Analysis

53

ReTraTree in Action - QuT-Clustering

4. Merge similar subtrajectories from different subchunks

t

x

R2

R1
> tau

sweep line

R3

R4

R5

R6

R7

Temporal-constrained Subtrajectory Cluster Analysis

54

ReTraTree in Action - QuT-Clustering

5. Append subtrajectories in order to get maximal patterns

t

x

R2

R1

> tau

sweep line

R3
R4

R5

R6

R7

Temporal-constrained Subtrajectory Cluster Analysis

55

ReTraTree in Action - QuT-Clustering

6. In any other case the algorithm does nothing, (continues to the next pair).

t

x

R2

R1

> tau

sweep line

R3

R4

R5

R6

R7

Temporal-constrained Subtrajectory Cluster Analysis

56

ReTraTree in Action - QuT-Clustering

7. The output representatives are:
• the merged representatives,

• the appended representatives and the

• rest of the representatives.

R1,2

R3,4

R5

R6

…

…

…t

x

R2

R1

> tau

sweep line

R3
R4

R5

R6

R7

Temporal-constrained Subtrajectory Cluster Analysis

57

Experimental Study – Datasets

Temporal-constrained Subtrajectory Cluster Analysis

58

Experimental Study – Quality of Clustering Analysis

Temporal-constrained Subtrajectory Cluster Analysis

59

Experimental Study – ReTraTree Maintenance

Temporal-constrained Subtrajectory Cluster Analysis

60

Experimental Study – Efficiency of QuT-clustering vs. S2T-

Clustering

of Queries

Temporal-constrained Subtrajectory Cluster Analysis

61

Summary

• We proposed ReTraTree, an indexing scheme which organizes trajectories by

using an effective spatio-temporal partitioning technique.

• We devised QuT-Clustering, a query operator on top of ReTraTree, to solve

the problem of temporal-constrained subtrajectory clustering.

• Our approach outperforms S2T-Clustering, the state-of-the-art in-DBMS

solution supported by PostgreSQL, by several orders of magnitude without

compromising the quality of the results.

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

62

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

63

Introduction

• The goal:

• Interactive mobility data exploration and analysis and more specifically, progressive

time-aware sub-trajectory cluster analysis.

• Desired specifications

• Efficiency; Ease of use (via an SQL interface); Interactive Visual Analytics support

• Our proposal

• Implement two state of the art efficient and scalable solutions for subtrajectory

clustering [12][13] that are incorporated in Hermes@PostgreSQL [14], a MOD which is

built on top of a real-world DBMS.

• Integrate with a Visual Analytics tool (V-Analytics) to facilitate real world interactive

analysis.

Major Modules and System Architecture

• V-Analytics

• QuT-Clustering

• ReTraTree

• S2T-Clustering

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

64

Voting

Segmentation

Sampling
Greedy

Clustering

pg3D-Rtree-k ...

data analyst

V-Analytics SQL

GUI

d
is

k
m

e
m

o
ry

ReTraTree

QuT-Clustering module

...

S2T-Clustering module

S2T-Clustering Module

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

65

Input:

SQL Interface

of

S2T-Clustering:

Output: Voting

Segmentation

Sampling
Greedy

Clustering

pg3D-Rtree-k ...

data analyst

V-Analytics SQL

GUI

d
is

k
m

e
m

o
ry

ReTraTree

QuT-Clustering module

...

S2T-Clustering module

QuT-Clustering Module

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

66

Voting

Segmentation

Sampling
Greedy

Clustering

pg3D-Rtree-k ...

data analyst

V-Analytics SQL

GUI

d
is

k
m

e
m

o
ry

ReTraTree

QuT-Clustering module

...

S2T-Clustering module

V-Analytics Module

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

67

Voting

Segmentation

Sampling
Greedy

Clustering

pg3D-Rtree-k ...

data analyst

V-Analytics SQL

GUI

d
is

k
m

e
m

o
ry

ReTraTree

QuT-Clustering module

...

S2T-Clustering module

3D shapes of cluster membersMap display of clusters

Evolution of cardinality of clusters

over time

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

68

Demonstration of Results

Run 1: Small Sub-

Trajectories

Run 2: Large Sub-

Trajectories

Discovery of holding patterns performed by

aircrafts

Comparison of 2 runs

of S2T-Clustering

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

69

Demonstration of Results

• Exploration of results of 5 runs

of QuT-Clustering.

• Each run has an increasing

temporal predicate

• W: 800-1000, 600-1000, 400-

1000, 200-1000, 0-1000

• We ask for patterns that are

valid during the specified

period.

• The time is specified in relative

units from 0 to 1000.

Representatives

Time-Aware Subtrajectory Clustering in
Hermes@PostgreSQL

70

Summary

• We presented an efficient in-DBMS framework that facilitates progressive

time-aware subtrajectory cluster analysis.

• spatiotemporal subtrajectory clustering

• on demand index-based time-aware clustering

• The framework is also extended with a VA tool to facilitate real world analysis.

Publications related to Part I

71

Originating from this PhD Thesis

1. N. Pelekis, P. Tampakis, M. Vodas, C. Panagiotakis, Y. Theodoridis. In-DBMS Sampling-based Sub-

trajectory Clustering, In Proceedings of EDBT Conf., 2017.

2. N. Pelekis, P. Tampakis, M. Vodas, C. Doulkeridis Y. Theodoridis. On Temporal-Constrained Sub-

Trajectory Cluster Analysis, Data Mining and Knowledge Discovery, 31(5):1294-1330, 2017.

3. P. Tampakis, N. Pelekis, N. V. Andrienko, G. L. Andrienko, G. Fuchs, and Y. Theodoridis. Time-aware

Sub-trajectory Clustering in Hermes@PostgreSQL. In Proceedings of IEEE ICDE Conf., 2018.

Part III
Distributed Algorithms and

Techniques

72

Big Mobility Data Analytics:
Algorithms and Techniques for Efficient

Trajectory Clustering

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

73

Distributed Subtrajectory Join on Massive Datasets

74

Problem Formulation

• Given two sets of trajectories, retrieve

… all pairs of maximal subtrajectories

… that move “close enough” in time and space

… for at least some time duration.

Distributed Subtrajectory Join on Massive Datasets

75

Problem Formulation

• Example

object id=2036632681
The Join returned 5 trajectories

that moved “together” for at least

5 minutes

The “common” movement

of these trajectories

Distributed Subtrajectory Join on Massive Datasets

76

Problem Formulation

• Given two sets of trajectories, retrieve

• all pairs of maximally “matching” subtrajectories.

Distributed Subtrajectory Join on Massive Datasets

77

Problem Formulation

• In fact, the set of Joining points is the outcome of

inner join R⨝S, where the evaluated join predicates

are εsp and εt.

• However, these pairs of points do not suffice to

return the correct query result.

Problem Formulation

• Why Joining points are not enough?

Distributed Subtrajectory Join on Massive Datasets

78

Case 1 Case 2

Distributed Subtrajectory Join on Massive Datasets

79

Problem Formulation

• A naïve algorithm would require the Cartesian

product R × S to produce the correct result.

• We claim that R × S can be represented by two sets

of pairs of points, the set of

• Joining points (JP) and

• the set of non-joining points (NJP).

• Formally, R × S = JP U NJP.

• Obviously, trying to deal with our problem by utilizing

the Cartesian product is unrealistic.

Distributed Subtrajectory Join on Massive Datasets

80

Problem Formulation

Distributed Subtrajectory Join on Massive Datasets

81

The Basic Subtrajectory Join Algorithm (DTJb)

Distributed Subtrajectory Join on Massive Datasets

82

The Basic Subtrajectory Join Algorithm

(DTJb) – Partitioning

• M disjoint temporal partitions,

→ cannot guarantee the correctness due to εt.

• We expand each partition by εt, so that it can be

processed independently in parallel.

• Duplication avoidance

t

y

t0 t1 t2 t3 t4

εtεt

Distributed Subtrajectory Join on Massive Datasets

83

The Basic Subtrajectory Join Algorithm (DTJb) – Join

Distributed Subtrajectory Join on Massive Datasets

84

The Basic Subtrajectory Join Algorithm (DTJb) – Refine

Distributed Subtrajectory Join on Massive Datasets

85

The Basic Subtrajectory Join Algorithm (DTJb) – Refine

Distributed Subtrajectory Join on Massive Datasets

86

Subtrajectory Join with Repartitioning (DTJr)

Distributed Subtrajectory Join on Massive Datasets

87

• We sample the input data (InputSampler) and

construct an equi-depth histogram on the

temporal dimension.

• The histogram contains M equi-sized bins.

t

y

t0 t1 t2 t3 t4

Subtrajectory Join with Repartitioning (DTJr) – Repartitioning

Distributed Subtrajectory Join on Massive Datasets

88

• In order to minimize the I/O cost,

• Join procedure in the Map phase, and the

• Refine in the Reduce phase.

• Each HDFS block is expanded with additional points

that exist at time (+/-) εt, and this is the process of

InputSplits creation.

• Duplication avoidance.

t

y

t0 t1 t2 t3 t4

εtεt

Split

Subtrajectory Join with Repartitioning (DTJr) – Repartitioning

Distributed Subtrajectory Join on Massive Datasets

89

Index-based Subtrajectory Join with Repartitioning (DTJi)

• Spatial Index (SpI)

• QuadTrees

• Trajectory Index (TrI)

• HashMap

• Key → trajectory ID

• Value → list of positions

Distributed Subtrajectory Join on Massive Datasets

90

Index-based Subtrajectory Join with Repartitioning (DTJi)

Distributed Subtrajectory Join on Massive Datasets

91

Experimental Study

• Setting

• 49 node Hadoop 2.7.2 cluster (1 Master +

48 Slaves).

• Each slave → 4 CPU cores, 4 GB of RAM

and 60 GB of HDD.

• 192 containers.

• Dataset → IMIS

• 699,031 trajectories of ships moving in the

Eastern Mediterranean

• for a period of 3 years.

• This dataset contains approximately 1.5

billion records, 56GB in total size.

Distributed Subtrajectory Join on Massive Datasets

92

Experimental Study - Scalability

Distributed Subtrajectory Join on Massive Datasets

93

Experimental Study – Repartitioning and Load Balancing

Distributed Subtrajectory Join on Massive Datasets

94

Experimental Study – Comparative Evaluation

Distributed Subtrajectory Join on Massive Datasets

95

Summary

• We introduced the Distributed Subtrajectory Join query.

• We addressed it in a scalable manner following the MapReduce

programming model.

• The results show that our index-based solution performs up to 16x faster

compared with our baseline and 3x faster than the closest related state of the

art algorithm.

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

96

Problem Formulation

• The problem of Subtrajectory Clustering can

be decomposed to

1. Subtrajectory Join → Computation of LCSS

2. Trajectory Segmentation

3. Subtrajectory Clustering

• Assuming a cluster is represented by its

representative (or medoid) subtrajectory, we

define clustering as an optimization problem:

• Distributed Subtrajectory Clustering → Solve

Problems 1, 2 and 3 (in this order) in a

parallel/distributed way.

Scalable Distributed Subtrajectory Clustering

97

A

B

C

D

O

Initial Dataset

A

B

C

D

O

Subtrajectory Join

(for trajectory A→D)

A

B

C

D

O

Trajectory Segmentation

A

B

C

D

O

Clustering and Outlier

Detection

Scalable Distributed Subtrajectory Clustering

98

Problem Solution – Overview

DTJi

• TSA1→ identifies the beginning of a new
subtrajectory whenever the density (V(ri)) of its
neighborhood changes significantly.

• TSA2 → identifies the beginning of a new
subtrajectory whenever the composition of its
neighborhood changes substantially.

Scalable Distributed Subtrajectory Clustering

99

Problem Solution – Distributed Trajectory Segmentation

Scalable Distributed Subtrajectory Clustering

100

Problem Solution – Distributed Clustering

Problem Solution – Refinement of Results

• For each partition, the clustering procedure will decide

whether a subtrajectory is

• a Representative (R),

• a Cluster Member (C) or

• an Outlier (O).

• For each intersecting subtrajectory q and for each pair

of consecutive partitions (i, j) with which q intersects, q

can have the following pairs of states:

• (a) O-O,

• (b) R-R,

• (c) C-C,

Scalable Distributed Subtrajectory Clustering

101

• (d) R-C (C-R),

• (e) R-O (O-R) and

• (f) C-O (O-C)

Experimental Study – Datasets

• Intersection

• Brest

• SIS

Scalable Distributed Subtrajectory Clustering

102

Experimental Study – Comparison with Related Work

• DSC vs S2T-Clustering vs TraCluS.

Scalable Distributed Subtrajectory Clustering

103

Scalable Distributed Subtrajectory Clustering

104

Experimental Study – Performance and Scalability

Scalable Distributed Subtrajectory Clustering

105

Summary

• We addressed the problem of Distributed Subtrajectory Clustering by

building upon a scalable subtrajectory join query operator.

• We proposed two alternative trajectory segmentation algorithms.

• We proposed a distributed clustering algorithm where the clusters are

identified in a parallel manner and get refined as a final step.

• Our experimental study shows that our solution is more effective and far more

scalable (since it is distributed) from the state of the art.

Publications related to Part II

106

Originating from this PhD Thesis

1. P. Tampakis, C. Doulkeridis, N. Pelekis, and Y. Theodoridis. Distributed Subtrajectory Join on Massive

Datasets. ACM Trans. Spatial Algorithms and Systems, to appear.

2. P. Tampakis, N. Pelekis, C. Doulkeridis, and Y. Theodoridis. Scalable Distributed Subtrajectory

Clustering. In Proceedings of IEEE Big Data Conf., 2019.

Other publications “influenced” by the above

1. P. Petrou, P. Nikitopoulos, P. Tampakis, A. Glenis, N. Koutroumanis, G. M. Santipantakis, K. Patroumpas,

A. Vlachou, H. Georgiou, E. Chondrodima, C. Doulkeridis, N. Pelekis, G. L. Andrienko, F. Patterson, G.

Fuchs, Y. Theodoridis, G. A. Vouros. ARGO: A Big Data Framework for Online Trajectory Prediction.

In Proceedings of SSTD, 2019.

2. P. Petrou, P. Tampakis, H. Georgiou, N. Pelekis, Y. Theodoridis. Online Long-term Trajectory

Prediction based on Mined Route Patterns. In Proceedings of ECML/PKDD Workshops, 2019.

Part IV
Outlook

107

Big Mobility Data Analytics:
Algorithms and Techniques for Efficient

Trajectory Clustering

Outline
• Setting the Scene

• Motivation & Application Scenarios

• Challenges & Contributions

• Datasets

• In-DBMS Centralized Algorithms and Techniques

• In-DBMS Sampling-based Subtrajectory Clustering

• Temporal-constrained Subtrajectory Cluster Analysis

• Time-Aware Subtrajectory Clustering in Hermes@PostgreSQL

• Distributed Algorithms and Techniques

• Distributed Subtrajectory Join on Massive Datasets

• Scalable Distributed Subtrajectory Clustering

• Outlook

• Conclusions & Ideas for Future Work

108

Conclusions

The Thesis’ contributions, in a nutshell:

• Centralized environment:

• S2T-Clustering, an efficient subtrajectory clustering algorithm

• ReTraTree, an indexing scheme assisting temporal-constrained subtrajectory cluster

analysis

• QuT-Clustering, an in-DBMS query operator over ReTraTree

• Distributed (Big Data) environment:

• algorithms addressing the Distributed Subtrajectory Join (DTJ) query, following the

MapReduce programming model

• algorithms addressing the Distributed Subtrajectory Clustering problem, by building

upon DTJ

109

Ideas for Future Work

• Concerning the problem of temporally-constrained subtrajectory cluster

analysis:

• investigate real-time solutions, on big data architectures.

• Regarding the Distributed Subtrajectory Join operator:

• investigate how the solution provided can be applicable to streaming trajectories

• examine how this query can be extended and utilized in order to be able to identify

efficiently various mobility patterns (e.g., flocks, convoys, moving clusters swarms etc.)

• investigate the potential of extending the solution proposed here to tackle the problem of

k-nn trajectory join.

• Concerning the problem of Distributed Subtrajectory Clustering:

• extend our solution with properties of density-based clustering algorithms

• investigate the possibility of addressing the same problem in a streaming environment,

since our algorithm employs a single pass over the data.

110

References

111

1. M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Indexing spatiotemporal archives. VLDB J., 15(2):143–164, 2006.

2. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. PVLDB, 1(1):1068–1080,

2008.

3. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In SSTD, pages 364–381, 2005.

4. Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. PVLDB, 3(1):723–734, 2010.

5. M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst., 27(3):267–289, 2006.

6. J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-group framework. In SIGMOD, pages 593–604, 2007.

7. P. K. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Taylor. Subtrajectory clustering: Models and algorithms. In PODS, pages

75–87, 2018.

8. P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory joins. In GSN, pages 109–128, 2006.

9. Y. Chen and J. M. Patel. Design and evaluation of trajectory join algorithms. In SIGSPATIAL, pages 266–275, 2009.

10. H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of large sets of moving object trajectories. In TIME, pages 79–87,

2008.

11. N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng. Signature-based trajectory similarity join. IEEE Trans. Knowl. Data Eng., 29(4):870-883,

2017.

12. N. Pelekis, P. Tampakis, M. Vodas, C. Panagiotakis, Y. Theodoridis. In-DBMS Sampling-based Sub-trajectory Clustering, In Proceedings

of EDBT, 2017.

13. N. Pelekis, P. Tampakis, M. Vodas, C. Doulkeridis Y. Theodoridis. On Temporal-Constrained Sub-Trajectory Cluster Analysis, Data

Mining and Knowledge Discovery, 31(5):1294-1330, 2017.

14. Hermes@PostgreSQL MOD engine. URL: http://infolab.cs.unipi.gr/hermes.

15. G. L. Andrienko, N. V. Andrienko, P. Bak, D. A. Keim, and S. Wrobel. Visual Analytics of Movement. Springer, 2013.

16. M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional trajectories. In ICDE, pages 673–684, 2002.

http://infolab.cs.unipi.gr/hermes

Questions ?

112

Big Mobility Data Analytics:
Algorithms and Techniques for Efficient

Trajectory Clustering

