

Using Large Trajectory Dataset for Quantifying Mobility

Kristian Torp Department of Computer Science Aalborg University, Denmark torp@cs.aau.dk

Agenda

- Trajectory-based travel time
 - Why not single-segment based?
- Point-based versus trajectory-based travel-time
 - Does it matter?
 - A short comparison to induction-loop data
- Fuel consumption
 - Estimated from high-frequency GPS data
 - Real consumption from CANbus/OBDII data

Trajectory-Based Travel Time

BDMA 2021-03-23

2020: Trip Count, Denmark

CPH: Langebro-Rådhuspladsen

Aalborg: Travel-Time: Limfjordstunnel

- Workdays
- 5 minutes resolution

Svendborg (~27K Inhabitants)

BDMA 2021-03-23

Summary: Trajectory Travel-Time

- Ground-truth = trajectory-based travel time A to B (!/?)
- Trajectory data gives insight on a sequence of segments
 - Through a city, a tunnel
 - Turn-times in intersections and round-abouts
- High-frequency GPS data is needed
 - <10-20 seconds data, we like 1-second data</p>
 - Partners: "This is too expensive!" (communication, storage, query)
- Limitations of our approach
 - Careful in areas with limited data
 - We use a road-segment level granularity (extremely efficient)
 - Partners requests putting start/end any place on the map
 - ... (properly something I am blind to ☺)
- GDPR is a major issue
 - Learn to live with it!

Point-Based versus Trajectory-Based Travel Time

1 Second (1Hz) GPS Data

1 Second Trajectory

5 Seconds GPS Data/Trajectory

1 vs 5 Seconds – Computed Speeds

1 vs 5 Seconds – Computed Speeds

1 vs 5 Second – Computed Speeds

1 vs 120 Second - Wrong Trajectory

6

Road-Segment Coverage

- Point based coverage quickly drops
- Trajectory based worse using 120-second data

Travel Time

- Point based up to 3% off using 5-sec data
- Trajectory based has problems with 120-sec data

BDMA 2021-03-23

Østre Allé (ring 2), Aalborg, Denmark

Fuel Consumption

BDMA 2021-03-23

Introduction: Fuel Consumption

- Focus on reducing fuel consumption and emissions
 SDG 11
- Limited knowledge about fuel consumption?
 - Very limited datasets available
- Estimated fuel consumption from GPS
 - We have a lot of it
 - How accurate is it?
- Which factors affect fuel consumption?
 - Elevation, weight, weather, wind, temperature etc.

Fuel Consumption Models

- Different models with different features
 - Instantaneous consumption vs aggregated
 - Second by second or a per trajectory
 - Absolute consumption versus arbitrary measure
 - Road grade or no road grade

- SIDRA TRIP fuel consumption model
 - Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION [Akçelik and Besley, CAIRT '03]
 - Absolute second-by-second fuel consumption estimates in *ml/s*
 - Takes into consideration road grade

Data Foundation

• GPS

- 1Hz including instantaneous fuel consumption
- Millions of km of driving in Denmark
- CANbus
 - 1Hz GPS/CANbus
 - ~43K km of driving in Denmark
- OpenStreetMap Road Network of Denmark
 - 2 million edges
- Digital Elevation Model of Denmark
 - 2.6 million 100x100 raster tiles
 - 10 meter resolution
- Weather Data
 - NOAA hourly historic weather archive

Elevating Road Network (3D)

- Method: Map match GPS data and elevate road network
 - Elevate every existing connection point in road network with DEM
- 3D road network (3D map)
- Quality dependent on resolution of points in the road network

Elevating Road Network (H3D)

- Method: Split and elevate road network
 - Elevate every 10 meter of road network with DEM
- High-precision 3D road network (H3D map)
- Independent on map resolution

Road Grade's ~ Fuel Consumption C

- 2D not suitable (even in Denmark)
- H3D slightly more accurate than 3D
 - Not worth the extra effort

SIDRA Trip Evaluation: Single Vehicles

Citroën C4	Measured [ml/s]	2D Map %	3D map %	H3D map %
All data	0.97	96%	97%	97%
Constant speed	1.28	99%	100%	100%
Accelerating	1.37	106%	110%	109%
Decelerating	0.55	76%	76%	77%
Driving uphill	1.43	63%	78%	77%
Driving downhill	0.54	170%	132%	134%

Peugeot 206+	Measured [ml/s]	2D Map %	3D map %	H3D map %
All data	0.99	95%	98%	98%
Constant speed	1.44	98%	98%	98%
Accelerating	1.63	102%	103%	103%
Decelerating	0.41	76%	76%	77%
Driving uphill	1.39	66%	89%	88%
Driving downhill	0.65	143%	96%	98%

Weathers and Fuel Consumption

- Fog and snow indicates a slight increase in the fuel consumption
 - Too little data?

Wind and Fuel Consumption

- Some wind impact above 70 km/h
- Speed much more important than wind!

Summary: Fuel Consumption

- Present a model for elevating road network
 - Evaluates on 2D, 3D, High-precision 3D map
- Hard to accurately estimate the fuel consumption from GPS
 - Even though the model has been calibrated to the individual vehicles
 - Constant speed and accelerations fairly accurate
- Different vehicles yield different model performance
 - Performance of fuel consumption model varies across different vehicles
- Other factors affecting fuel consumption
 - Weather and temperature is related to fuel consumption
 - Wind is related to fuel-consumption estimation/usage
 - Not incorporated in the fuel consumption models!

Summary: Overall

- GPS data good source of information about traffic
- Integration of GPS data with other data sources
 - Spatial/temporal integration point
- The sampling period of GPS data is important for traveltime
 - Huge differences 1-second versus 120-second data
- New topics for the Daisy Research Group
 - Energy source: Electric vehicles (EVs)
 - Vehicles types: Today mostly person cars, trucks and bicycles
 - Data types: Induction loops and weather
 - From mostly batch to near real-time processing
- We are open for collaboration

Thank you for your attention!